
SiFive HiFive1 Rev B Getting Started Guide

Version 1.0

© SiFive, Inc.

SiFive HiFive1 Rev B Getting Started

Guide

Proprietary Notice

Copyright © 2019, SiFive Inc. All rights reserved.

Information in this document is provided “as is,” with all faults.

SiFive expressly disclaims all warranties, representations, and conditions of any kind, whether

express or implied, including, but not limited to, the implied warranties or conditions of mer-

chantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation indirect, incidental, spe-

cial, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Release Information

Version Date Changes

1.0 March 19, 2019 Initial Release

Contents

1 HiFive1 Rev B Diagram ...3

1.1 HiFive1 Rev B Components ...3

1.2 HiFive1 Rev B Schematics...4

2 Required Hardware ...5

2.1 HiFive1 Rev B Board...5

2.2 USB Cable ... 5

3 Hardware Features ..6

3.1 SiFive FE310-G002 SoC ...6

3.2 SPI Flash ... 6

3.3 USB to JTAG and Serial Ports..6

3.4 I/O expansion connectors ..7

3.5 Wireless... 7

4 Hardware Options..9

4.1 Power Supply ... 9

4.2 Compatible Shields ...9

4.3 External JTAG probe header ..9

5 Board Setup ..10

5.1 Connecting the USB Interface ..10

6 Debugger and Console ...11

6.1 Segger J-Link OB Debugger Configuration ..11

6.1.1 Ubuntu install example..12

6.1.2 Windows install example ...12

6.2 Console Configuration ...12

6.2.1 Ubuntu Console Example..12

1

6.3 Console I/O .. 14

6.4 Drag and Drop Flashing Operation ...15

7 SiFive Software Development Flow ...16

7.1 Supported Development Platforms ...16

7.2 Software Development Using Freedom Studio IDE ..16

7.3 Software Development Using Freedom E SDK Command Line Tools17

7.3.1 Setting Up Freedom E SDK...17

7.3.2 Freedom Metal...18

7.3.3 Freedom E SDK Standard BSP ...18

7.3.4 Example Programs ...19

7.3.5 Updating the SDK ..20

7.3.6 Using the Freedom E SDK ..20

8 Zephyr RTOS ..22

9 For More Information ...23

9.1 Debug Reference Info: ..23

2

Chapter 1

HiFive1 Rev B Diagram

1.1 HiFive1 Rev B Components

Figure 1: HiFive1 Rev B Board

Figure 1 shows the HiFive1 Rev B with the components which are described in this document.

3

1.2 HiFive1 Rev B Schematics

Schematics for the HiFive1 Rev B board can be found on SiFive’s web site.

• Documentation:

https://www.sifive.com/documentation

4

Chapter 2

Required Hardware

Using the HiFive1 Rev B requires the following hardware.

2.1 HiFive1 Rev B Board

SiFive’s HiFive1 Rev B is a development board for the FE310-G002, a microcontroller with an

E31 RISC-V RV32IMAC CPU.

2.2 USB Cable

A standard USB Type A Male to Micro-B Male cable can be used to connect a host system to

the HiFive1 Rev B. USB connection is used for power and communication.

• USB cable example:

http://store.digilentinc.com/usb-a-to-micro-b-cable/

5

Chapter 3

Hardware Features

3.1 SiFive FE310-G002 SoC

The HiFive1 Rev B enables evaluation of the SiFive FE310-G002 System on Chip features.

More information on this SiFive FE310-G002 chip can be found at:

• Documentation:

https://www.sifive.com/documentation

3.2 SPI Flash

The HiFive1 Rev B is populated with 32Mbit of Flash memory connected to the SPI interface.

• Datasheet:

http://www.issi.com/WW/pdf/25LP-WP032D.pdf

3.3 USB to JTAG and Serial Ports

The HiFive1 Rev B is populated with a Segger J-Link OB module which bridges USB to JTAG

and two serial ports used for FE310-G002 console, FE310-G002 JTAG, and ESP32-SOLO-1

configuration.

https://www.segger.com/products/debug-probes/j-link/models/j-link-ob/

• JTAG used for FE310-G002 debug

• Serial 0 used for FE310-G002 console

• Serial 1 used for Espressif Systems ESP32-SOLO-1

6

Figure 2: J-Link OB connectivity

Figure 2 shows the connectivity between SiFive FE310-G002 SoC, J-Link OB, and Wireless

Connectivitiy on HiFive1 Rev B

3.4 I/O expansion connectors

The HiFive1 Rev B features I/O expansion connectors and the pinout was derived from

Arduino®. See the pinout in (Figure 5). Note that:

• Arduino® adapter compatibility has not been verified.

• No analog signal I/O capability and AREF pin is not connected.

• Technical support requests must be directed to SiFive.

3.5 Wireless

The HiFive1 Rev B features an Espressif Systems ESP32-SOLO-1 module for wireless stan-

dard Bluetooth, Bluetooth LE, and Wi-Fi 802.11n. The ESP32-SOLO-1 module contains an

SoC, flash memory, precision discrete components and a PCB antenna. Note that the flash

memory for the ESP32-SOLO-1 module is a separate flash memory from the SPI flash dedi-

cated to the FE310-G002. The serial interface is used to configure the Espressif Systems

7

ESP32-SOLO-1 flash but note that the ESP32-SOLO-1 is delivered flashed with esp32-at

firmware from:

https://github.com/espressif/esp32-at

The ESP32-SOLO-1 radios are disabled on boot by firmware to reduce power consumption.

Note that drivers are expected in the late Q2, 2019 timeframe.

• Datasheet:

https://www.espressif.com/sites/default/files/documentation/esp32-solo-1_datasheet_en.pdf

The Espressif Systems ESP32-SOLO-1 has multiple communication interfaces. It has wireless

interfaces 802.11n and Bluetooth. It also has wired SPI and serial. The SPI interface is used for

as primary data path between wireless interfaces and the application running on FE310-G002.

Figure 3: Espressif Systems ESP32-SOLO-1 connectivity

Figure 3 shows the connectivity between SiFive FE310-G002 SoC, Wireless Connectivitiy, and

J-Link OB on HiFive1 Rev B.

8

https://github.com/espressif/esp32-at
https://www.espressif.com/sites/default/files/documentation/esp32-solo-1_datasheet_en.pdf

Chapter 4

Hardware Options

4.1 Power Supply

One option for HiFive1 Rev B power input is USB via host system or USB power supply through

the USB Type A to Micro-B cable. This power input method is convenient because the USB

interface also features communication capability.

Another option for HiFive1 Rev B power is via power jack J7 where an external 7-12V DC sup-

ply or battery can be connected. Note the center positive polarity of the input power jack J7.

Another option for HiFive1 Rev B power is via shield connector VIN pin. The input range is

7-12V DC.

4.2 Compatible Shields

Shields are devices which are designed to fit on the I/O headers on devices which match the

Arduino® form factor. They provide additional functionality. Generally, shields which communi-

cate with SPI, UART, and digital I/O should be easy to use with the HiFive1 Rev B, but their sup-

porting software library may need minor tweaks to recognize the HiFive1 Rev B.

Note that HiFive1 Rev B does not feature direct analog signal input capability. Analog inputs will

need an adapter such as a shield that supports this capability.

Note that shield IOREF signal for HiFive1 Rev B is fixed at 3.3V.

The shield manufacturer typically provides software libraries.

4.3 External JTAG probe header

The HiFive1 Rev B is populated with a 2x5, 0.05" pitch connector for use with an optional exter-

nal JTAG probe. This option would replace the on board Segger J-Link OB JTAG function with

an external JTAG debugger.

9

Chapter 5

Board Setup

5.1 Connecting the USB Interface

Connect the USB Type A to Micro-B cable between the USB Micro-B port of the HiFive1 Rev B

and the USB Type A of the host machine. This interface provides serial console access to the

HiFive1 Rev B, a power source for the board, and is a mechanism to program and debug the

FE310-G002

When the USB cable is connected you should see the green power indication LEDs D10 and D9

light up. This indicates that the main 5V supply is active, 3.3V supply is active, and the 1.8V

supply is active.

10

Chapter 6

Debugger and Console

The HiFive1 Rev B comes programmed with a simple bootloader and a demo software program

which prints to the console and cycles through the RGB LED in a rainbow pattern. You can input

“y” on the console to indidcate that the LEDs are changing and receive a “PASS” message.

This default program will be overwritten in the SPI Flash when you program a new program onto

the board but the bootloader code will not be modified. Chapter 7 provides more detail about

generating a new program.

The console, program, and debug functions on are implemented with a combination of debug-

ger hardware and software. This combination of debug hardware and software is collectively ref-

ered to as a “debugger”. The HiFive1 Rev B uses the Segger J-Link OB debugger. The Segger

J-Link OB all in one debugger solution includes GDB server software.

The J-Link OB debugger has the capability to transfer files via the USB mass storage feature.

When connected to a host system the HiFive1 Rev B advertises a USB mass storage device

and programming files can be conveniently flashed to the HiFive1 Rev B with graphical drag

and drop operation.

An optional external debugger can be used but this configuration is beyond the scope of this

document.

6.1 Segger J-Link OB Debugger Configuration

The only hardware connection required is the USB Type A Male to Micro-B Male cable from the

host machine to the HiFive1 Rev B

The Freedom Studio development download bundles debugger software such that there is no

need to configure the software separately. If Freedom Studio detects that J-Link OB software is

installed it will attempt to use this install otherwise it will use the bundled software. If you’re

using Freedom Studio you can skip this section.

11

The Freedom E SDK development environment requires J-Link OB software to be installed sep-

arately on the host machine software for programming and debugging on the HiFive1 Rev B.

The J-Link software that is installed is a function of the host machine Operating System.

• Select the host OS type and download documentation pack from:

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack

6.1.1 Ubuntu install example

Download the JLink_Linux_V644b_x86_64.deb file from https://www.segger.com/downloads/

jlink/JLink_Linux_x86_64.deb

After downloading the file, run the command below to install the software:

> sudo dpkg -i ~/Downloads/JLink_Linux_V644b_x86_64.deb

Symbolic links to executables are installed in /usr/bin directory.

6.1.2 Windows install example

Download and run the JLink_Windows.exe file from https://www.segger.com/downloads/jlink/

JLink_Windows.exe

6.2 Console Configuration

After configuring the J-Link OB Debugger and connecting the HiFive1 Rev B to the host

machine with a USB Type A Male to Micro-B Male cable, the HiFive1 Rev B console can be

accessed from the host machine.

6.2.1 Ubuntu Console Example

The debugger will present two ttyACM devices and a USB storage device to the operating sys-

tem. The operating system will label these devices something like /dev/ttyACM0, /dev/ttyACM1,

and /dev/sdb.

Using a terminal emulator such as GNU screen on Linux, open a console connection from the

host machine to the HiFive1 Rev B.

Set the following parameters:

12

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://www.segger.com/downloads/jlink/JLink_Linux_x86_64.deb
https://www.segger.com/downloads/jlink/JLink_Linux_x86_64.deb
https://www.segger.com/downloads/jlink/JLink_Windows.exe
https://www.segger.com/downloads/jlink/JLink_Windows.exe

Speed 115200

Parity None

Data bits 8

Stop bits 1

Hardware Flow None

For example, on Linux using GNU Screen:

> sudo screen /dev/ttyACM0 115200

You can use Ctrl-a k sequence to “kill” (exit) the running screen session.

Depending on the host setup, you may need additional drivers or permissions to access the

USB port.

Below is an example of the steps you may need to follow if you are running on Ubuntu-style

Linux to access a USB port based console without sudo permissions:

1. With the board’s debug interface connected, verify the HiFive1 Rev B shows up with

the lsusb command:

> lsusb
...

> Bus XXX Device XXX: ID 1366:1051 SEGGER
...

2. Set the udev rules to allow the device to be accessed by the plugdev group:

> sudo vi /etc/udev/rules.d/99-jlink.rules

Add the below “SUBSYSTEM==…” line directly above the last line of the file

“LABEL="jlink_rules_end"” such that it looks like:

SUBSYSTEM=="tty", ATTRS{idVendor}=="1366", ATTRS{idProduct}=="1051",
MODE="664", GROUP="plugdev"

LABEL="jlink_rules_end"

3. See if the board shows up as a serial device belonging to the plugdev group:

> ls /dev/ttyACM*
/dev/ttyACM0 /dev/ttyACM1

(If you have other serial devices or multiple boards attached, you may have more

devices listed). For serial communication with the console UART, you will always

want to select the first number of the two, in this example /dev/ttyACM0.

> ls -l /dev/ttyACM0
crw-rw-r-- 1 root plugdev 166, 0 Mar 19 20:30 /dev/ttyACM0

13

4. Add the user name to the plugdev group to eliminate need to sudo for access to the

device. You can use the whoami command to determine the user name.

> whoami
<user_name>

> sudo usermod -a -G plugdev <user_name>

5. Log out and log back in, then check that you’re now a member of the plugdev group:

> groups
... plugdev ...

Now you should be able to access the serial console (UART) and debug interface without sudo

permissions.

6.3 Console I/O

If you have the serial console setup correctly, below is what you will see on the console on a

factory programmed HiFive1 Rev B and note that you may need to hit the 'Reset' button to

restart the program and see the output:

SIFIVE, INC.

5555555555555555555555555
5555 5555

5555 5555
5555 5555

5555 5555555555555555555555
5555 555555555555555555555555

5555 5555
5555 5555

5555 5555
5555555555555555555555555555 55555
55555 555555555 55555

55555 55555 55555
55555 5 55555

55555 55555
55555 55555

55555 55555
55555 55555

55555 55555
555555555

55555
5

'led_fade' Demo

555
5555555 Are the LEDs Changing? [y/n] 555555555
555
y
PASS

14

6.4 Drag and Drop Flashing Operation

The HiFive1 Rev B appears as a flash drive to the OS. Using an OS GUI a .hex file can be

transferred to the HiFive1 Rev B flash memory with drag and drop operation.

Figure 4: HiFive1 Rev B Drag and Drop Flash Memory Feature

Figure 4 shows a flashing operation via Linux GUI.

15

Chapter 7

SiFive Software Development Flow

The FE310-G002’s boot code contains a jump to the external SPI Flash memory on the HiFive1

Rev B, at address 0x20010000. You can change the program which the FE310-G002 executes

by using the debug/programming interface to flash a new compiled program into the external

SPI Flash.

SiFive supports multiple software development flows.

• Freedom Studio (Section 7.2) is an Eclipse-Based IDE which bundles everything you need

for development into one download.

• Freedom E SDK (Section 7.3) enables you to compile source code with command line tools.

These software development flows will install the same set of tools, but the versions, install

paths, and associated software libraries and examples are different for each development flow.

Note that there is no support for HiFive1 Rev B from Arduino® IDE.

7.1 Supported Development Platforms

Freedom Studio IDE is supported on Linux, macOS, and Windows.

Freedom E SDK is supported only on Linux and macOS.

7.2 Software Development Using Freedom Studio IDE

SiFive recommends software development for the HiFive1 Rev B with the Eclipse-based Free-

dom Studio IDE. Freedom Studio IDE is supported for Windows, macOS, and Linux operating

systems. When using this method of software development, the precompiled tools and drivers

are automatically installed, you do not need to download or install them seperately to get tools

and example code.

• You can obtain Freedom Studio IDE from the SiFive website:

16

https://www.sifive.com/boards

• More information on how to use Freedom Studio IDE can be found in the manual at:

https://www.sifive.com/documentation

7.3 Software Development Using Freedom E SDK Command

Line Tools

Freedom-E-SDK is a public github repository, maintained by SiFive Inc, that makes it easy to

get started developing software for SiFive’s Freedom and RISC-V Core IP Platforms. The SDK

supports a wide array of SiFive Core Complexes, SoCs and Emulation environments. This sec-

tion describes how to setup the toolchain and configure the SDK. The section also walks

through building an example program and executing it in the RTL testbench included in a SiFive

Core IP devlierable. In addition, the section will walk through how to import custom BSPs and

build a program using the custom BSP target.

This section assumes the SDK will be used on a Linux or Linux like environments.

7.3.1 Setting Up Freedom E SDK

Prerequisites

To use this SDK, you will need the following software available on the host machine:

GNU Make
Git

Toolchain Prerequisites

To build programs and debug, you will need the following toolchains installed on the host

machine:

RISC-V GNU Toolchain
Segger J-Link OB debugger

Toolchains can be found on the SiFive Website, https://www.sifive.com/boards. The pre-built

tools have been carefully packaged to support both RISC-V 32-bit & 64-bit ISAs and work on

Linux, macOS, and Windows hosts.

Download the toolchain for the platform, and untar it to the desired location. Then, set the

RISCV_PATH environment variable so the Freedom-E-SDK can locate the tools. For example,

> cp riscv64-unknown-elf-gcc-<date>-<platform>.tar.gz <desired untar dir>
> cd <desired untar dir>
> tar -xvf riscv64-unknown-elf-gcc-<date>-<platform>.tar.gz
> export RISCV_PATH=<desired untar dir>/riscv64-unknown-elf-gcc-<date>-<version>

17

https://www.sifive.com/boards

See section Section 6.1 for installation of Segger J-Link OB debugger

Cloning the Freedom-E-SDK Repository

The Freedom-E-SDK repository can be cloned by running the following commands:

> git clone --recursive https://github.com/sifive/freedom-e-sdk.git
> cd freedom-e-sdk

The --recursive option is required to clone the git submodules included in the repository. If at

first you omit the --recursive option, you can achieve the same effect by updating submodules

using the command:

> git submodule update --init --recursive

For more info: https://github.com/sifive/freedom-e-sdk

7.3.2 Freedom Metal

Freedom Metal is a library developed by SiFive for writing portable software for all of SiFive’s

RISC-V IP, RISC-V FPGA evaluation images, and development boards. Programs written

against the Freedom Metal API are intended to build and run for all SiFive RISC-V targets. This

makes Freedom Metal suitable for writing portable tests, bare metal application programming,

and as a hardware abstraction layer for porting operating systems to RISC-V.

Consumers of Freedom-E-SDK should also be aware that we are still making refinements to the

API provided by Freedom Metal. As such, the Freedom Metal API should be considered in beta

until we tag a stable release of Freedom E SDK.

• Freedom Metal repository:

https://github.com/sifive/freedom-metal

• Freedom Metal API Documentation:

https://sifive.github.io/freedom-metal-docs/index.html

7.3.3 Freedom E SDK Standard BSP

The Freedom Metal Compatibility Library layer uses the board support package files to provide

the hardware abstraction layer. These bsp files can be found under the bsp folder in Freedom-

E-SDK and are encapsulated entirely within each target directory.

The HiFive1 Rev B support files for Freedom Metal are entirely within bsp/sifive-hifive1b/ and

consist of the following:

design.dts

18

https://github.com/sifive/freedom-e-sdk

The DeviceTree description of the target. This file is used to parameterize the Freedom Metal

library to the target device. It is included as a reference so that users of Freedom Metal are

aware of what features and peripherals are available on the target.

metal.h

The Freedom Metal machine header which is used internally to Freedom Metal to instantiate

structures to support the target device.

metal.lds

The linker script for the target device.

settings.mk

Used to set -march and -mabi arguments to the RISC-V GNU Toolchain.

7.3.4 Example Programs

Some example programs can be found in the software directory:

hello

Prints "Hello, World!" to stdout, if a serial device is present on the target.

return-pass

Returns status code 0 indicating program success.

return-fail

Returns status code 1 indicating program failure.

example-itim

Demonstrates how to statically link application code into the Instruction Tightly Integrated Mem-

ory (ITIM) if an ITIM is present on the target.

software-interrupt

Demonstrates how to register a handler for and trigger a software interrupt.

timer-interrupt

Demonstrates how to register a handler for and trigger a timer interrupt.

19

local-interrupt

Demonstrates how to register a handler for and trigger a local interrupt.

example-pmp

Demonstrates how to configure a Physical Memory Protection (PMP) region.

example-spi

Demonstrates how to configure, read, and write to SPI bus.

7.3.5 Updating the SDK

To update the SDK to the latest version:

> git pull origin master
> git submodule update --init --recursive

7.3.6 Using the Freedom E SDK

Building an Example

To compile a bare-metal RISC-V program:

> make BSP=metal [PROGRAM=hello] [TARGET=sifive-hifive1-revb] software

The square brackets in the above command indicate optional parameters for the make invoca-

tion. The default values of these parameters tell the build script to build the hello example for the

sifive-hifive1 target. If, for example, you wished to build the timer-interrupt example, you would

instead run the command

> make BSP=metal PROGRAM=timer-interrupt TARGET=sifive-hifive1-revb software

Uploading to the Target Board

> make BSP=metal [PROGRAM=hello] [TARGET=sifive-hifive1-revb] upload

Debugging a Target Program

> make BSP=metal [PROGRAM=hello] [TARGET=sifive-hifive1-revb] debug

Cleaning a Target Program Build Directory

> make BSP=metal [PROGRAM=hello] [TARGET=sifive-hifive1-revb] clean

20

Operations can be sequenced: clean then build then upload

> make BSP=metal [PROGRAM=hello] [TARGET=sifive-hifive1-revb] clean software
upload

Debugging tips. View program addresses, sections, opcodes, and source

> $RISCV_PATH/bin/riscv64-unknown-elf-objdump -dS software/hello/debug/hello.elf
|less

> $RISCV_PATH/bin/riscv64-unknown-elf-readelf -a software/hello/debug/hello.elf
|less

Create a Standalone Project

You can export a program to a standalone project directory using the standalone target. The

resulting project will be locked to a specific TARGET.

STANDALONE_DEST is a required argument to provide the desired project location.

> make standalone BSP=metal [PROGRAM=hello] [TARGET=sifive-hifive1-revb]
STANDALONE_DEST=<desired standalone dir>

Once the standalone project is created, it can be compiled simply by typing make.

> cd <desired standalone dir>
> make

For more make options run:

> make help

21

Chapter 8

Zephyr RTOS

For support of the Zephyr Real Time Operating System for HiFive1 Rev B, visit the following url:

https://github.com/sifive/riscv-zephyr/tree/hifive1-revb

22

https://github.com/sifive/riscv-zephyr/tree/hifive1-revb

Chapter 9

For More Information

Additional information, the latest version of this guide, and supporting files can be found at

https://www.sifive.com.

Questions are best answered on the SiFive Forums at http://forums.sifive.com.

More information about RISC-V in general is available at http://riscv.org.

SiFive thoughts, ideas, and news at https://www.sifive.com/blog/.

Webinars at https://info.sifive.com/risc-v-webinar.

9.1 Debug Reference Info:

https://gnu-mcu-eclipse.github.io/debug/jlink/install/.

https://www.segger.com/downloads/jlink/UM08001.

https://www.gnu.org/software/gdb/documentation/.

https://github.com/riscv/riscv-debug-spec.

23

https://www.sifive.com/
http://forums.sifive.com/
http://riscv.org/
https://www.sifive.com/blog/
https://info.sifive.com/risc-v-webinar
https://gnu-mcu-eclipse.github.io/debug/jlink/install/
https://www.segger.com/downloads/jlink/UM08001
https://www.gnu.org/software/gdb/documentation/
https://github.com/riscv/riscv-debug-spec

Figure 5: HiFive1 Rev B Pinout

Figure 5 shows the HiFive1 Rev B shield pinout pin labeling and muxing.

24

	SiFive HiFive1 Rev B Getting Started Guide
	SiFive HiFive1 Rev B Getting Started Guide
	Proprietary Notice
	Release Information

	Chapter 1 HiFive1 Rev B Diagram
	1.1 HiFive1 Rev B Components
	1.2 HiFive1 Rev B Schematics

	Chapter 2 Required Hardware
	2.1 HiFive1 Rev B Board
	2.2 USB Cable

	Chapter 3 Hardware Features
	3.1 SiFive FE310-G002 SoC
	3.2 SPI Flash
	3.3 USB to JTAG and Serial Ports
	3.4 I/O expansion connectors
	3.5 Wireless

	Chapter 4 Hardware Options
	4.1 Power Supply
	4.2 Compatible Shields
	4.3 External JTAG probe header

	Chapter 5 Board Setup
	5.1 Connecting the USB Interface

	Chapter 6 Debugger and Console
	6.1 Segger J-Link OB Debugger Configuration
	6.1.1 Ubuntu install example
	6.1.2 Windows install example

	6.2 Console Configuration
	6.2.1 Ubuntu Console Example

	6.3 Console I/O
	6.4 Drag and Drop Flashing Operation

	Chapter 7 SiFive Software Development Flow
	7.1 Supported Development Platforms
	7.2 Software Development Using Freedom Studio IDE
	7.3 Software Development Using Freedom E SDK Command Line Tools
	7.3.1 Setting Up Freedom E SDK
	Prerequisites
	Toolchain Prerequisites
	Cloning the Freedom-E-SDK Repository

	7.3.2 Freedom Metal
	7.3.3 Freedom E SDK Standard BSP
	7.3.4 Example Programs
	hello
	return-pass
	return-fail
	example-itim
	software-interrupt
	timer-interrupt
	local-interrupt
	example-pmp
	example-spi

	7.3.5 Updating the SDK
	7.3.6 Using the Freedom E SDK
	Building an Example
	Uploading to the Target Board
	Debugging a Target Program
	Cleaning a Target Program Build Directory
	Operations can be sequenced: clean then build then upload
	Debugging tips. View program addresses, sections, opcodes, and source
	Create a Standalone Project

	Chapter 8 Zephyr RTOS
	Chapter 9 For More Information
	9.1 Debug Reference Info:

