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Chapter 1

SiFive ECC Error Detection & Correction

Operation

1.1 What is ECC

ECC (Error Correction Codes) is a hardware mechanism that detects and in some cases cor-

rects defects in memory. On SiFive designs, SRAM blocks that optionally support ECC are

instruction cache, Instruction Tightly Integrated Memory (ITIM), Data Tightly Integrated Memory

(DTIM), L1 cache, and L2 data cache. The simplest case is a single bit error that is detected,

reported via interrupt handler, and corrected automatically by hardware without any software

intervention. More difficult scenarios involve double or multi-bit errors that are still reported and

tracked in hardware but are not correctable. The ECC hardware includes logic for detection and

correction, in addition to 7 redundant bits per 32-bit codeword or 8 redundant bits per 64-bit

codeword.

1.2 ECC Configuration

All blocks with ECC support are enabled globally through the Bus Error Unit (BEU) configuration

registers. The BEU is used to configure ECC reporting and enable interrupt handling via the

global or local interrupt controller. The global interrupt controller is the Platform Level Interrupt

Controller (PLIC). The local interrupt controller can be the Core Local Interrupt Controller (CLIC)

or the Core Local Interruptor (CLINT). The BEU registers plic_interrupt and

local_interrupt are used to route the errors to either interrupt controller. Additionally, the

BEU can be used for TileLink bus errors.

The BEU register memory map is shown below:
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Offset Size Attr Register Notes

0x000 1B RW cause Cause of error event

0x008 XLEN RW value Physical address of error event

0x010 1B RW enable Event enable mask

0x018 1B RW plic_interrupt Platform-level interrupt-enable mask

0x020 1B RW accrued Accrued event mask

0x028 1B RW local_interrupt Hart-local interrupt-enable mask

Table 1: Table BEU Registers

The BEU enable register must be programmed to a non-zero valule to allow ECC events to be

reported via the cause register. The cause register and enable register have the same bitfield

description:

[0] No Error
[1] Reserved
[2] Instruction cache or ITIM correctable ECC error
[3] ITIM uncorrectable ECC error
[4] Reserved
[5] Load or store TileLink bus error
[6] Data cache correctable ECC error
[7] Data cache uncorrectable ECC error

The BEU register accrued also has the same bitfield description as enable and cause and is

used to track errors as they are received. The BEU sets bits in the accrued register whether or

not they are enabled in the enable register. The accrued register can be used to monitor ECC

events which are not setup to be reported via the BEU.

Only enabled errors will be reported via cause register. For example, if cause has a value of 3,

this indicates an uncorrectable ITIM error. If multiple events occur then cause will report the first

one latched since the last time it was cleared by software.

The value register supplies the physical address that caused the event, or 0 if the address is

unknown. The BEU will only update the value register when the cause register is 0.

1.2.1 ECC Initialization

Any SRAM block or cache memory containing ECC functionality needs to be initialized prior to

use. ECC will correct defective bits based on memory contents, so if memory is not first initial-

ized to a known state, then ECC will not operate as expected. It is recommended to use a DMA,

if available, to write the entire SRAM or cache to zeros prior to enabling ECC reporting. If no

DMA is present, use store instructions issued from the processor. Initializing memory with ECC

from an external bus is not recommended. After initialization, ECC related registers, such as the

Bus Error Unit cause register, can be written to zero, and then ECC reporting can be enabled.

For 32-bit architectures, 32-bit aligned writes are recommended. Simililarly, for 64-bit architec-

tures, 64-bit aligned writes are recommended.

An example procedure using the DMA is described below.
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li t0 DMA_CTRL_ADDR + 0x80000 // channel 0
li t1, 1
sw t1, 0(t0)  // claim channel 0
li t1, SIZE_OF_TRANSFER
sd t1, 8(t0)  // bytes
li t1, DEST_BASE_ADDR
sd t1, 16(t0) // dest
li t1, CACHEABLE_ZERO_MEM_ADDR
sd t1, 24(t0) // src
li t1, 0xff000000 //rsize and wsize
sw t1, 4(t0)  // full speed copy
li t1, 3
sw t1, 0(t0)  // start transfer
1: // wait for completion
lw t1, 0(t0)
andi t1, t1, 2
bnez t1, 1b

// release DMA
sw zero, 0(t0)

1.3 ECC Interrupt Handling and Error Injection

The code running within the interrupt handler is not responsible for repairing single bit errors, as

this is done automatically by hardware.

The plic_interrupt register indicates which accrued events should generate an interrupt to

the PLIC. An interrupt is generated when any bit is set in both accrued and plic_interrupt,

i.e., when (accrued & plic_interrupt) != 0.

The local_interrupt register indicates which accrued events should generate an interrupt

directly to the hart associated with this bus-error unit. An interrupt is generated when any bit is

set in both accrued and local_interrupt, i.e., when (accrued & local_interrupt) != 0.

BEU errors are always enabled and thus do not have a control bit in mie (machine interrupt

enable) CSR. Likewise, there is no dedicated control bit for BEU errors in the mideleg (machine

interrupt delegation register) CSR, so it cannot be delegated to a mode less privileged than M-

mode.

Monitoring overall ECC events can be accomplished in software via the interrupt handler. If the

design utilizes L2 cache, the L2 cache controller contains hardware counters to track ECC

events, and optionally inject ECC errors to test the software handling of ECC events. Consult

the L2 manual for more information. If the design does not have an L2 cache controller, error

injection and thus software handling of errors can be accomplished manually by writing the

cause register.

The exception code value, located in mcause (machine trap cause) CSR, will be 11 (0xB) when

BEU interrupts are routed through the PLIC. When ECC interrupts are routed through the CLINT

or CLIC, the default exception code value will be 128 (0x80). Prior to software development,

consult the User Manual for your design to confirm the exception code.
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1.4 Hardware Operation Upon ECC Error

Harware will operate differently depending on which memory type encounters an ECC errror:

• Instruction Cache: The error is corrected and the cache line is flushed

• Data Cache: The error is corrected, the cache line is invalidated and written back to the

next level of memory

• ITIM, DTIM: Single bit errors are corrected and written back to the RAM. Errors will toggle

the err_from_tile_X signal for system level tracking

• L2: Single bit correction for L2 data and meta-data (meta-data includes index, tag, and

directory information). Double bit detection only on L2 data array.

Double bit errors are reported at the Core Complex boundary via the signal:

halt_from_tile_X. This signal, if asserted, remains high until reset.
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