

RISC-V Core IP for Target Vertical Markets

COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED

SiFive Core IP Embedding Intelligence Everywhere

Consumer

AR/VR/Gaming devices Smart Home Imaging/Wearables

Storage/Networking/5 SSD, SAN, NAS

Base Stations, Small cells, APs Switches, Smart NICs, Offload cards

ML/Edge

Sensor Hubs, Gateways Autonomous machines IoT devices

SiFive

64-bit Application Processors

S Cores

64-bit Embedded Processors

E Cores 32-bit Embedded Processors

Intelligent Edge

Embedding Intelligence from the Edge to the Cloud

2 Series Core IP:

SiFive's **smallest** and most **efficient** RISC-V processor IP

COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED

SiFive 7 Series Embedded Intelligence Everywhere

U7 Series

CLIC

PLIC

Debug

L2 Cache with ECC

Memory Port

Scalable throughput provided by 8+1 cores per cluster

Extensible design via custom instructions

Configurable memory architecture for application specific tuning

Tightly integrated memory for low latency access **64-bit addressability** for real time latency sensitive applications

Mixed-precision arithmetic for efficient compute of ML workloads

Peripheral Port

РМР

I\$ w/ECC

DTIM w/ECC

Front Port

Enhanced determinism for hard real-time constraints

Functional safety provided by in-built fault tolerance mechanisms

A **single** pre-integrated and verified deliverable

Cache lock capability for missioncritical computing

In-cluster coherent heterogenous combination of real-time and application processors

Core

PMP

System Port

D\$ w/ECC

TileLink or AMBA

Bus Matrix

SV39 MMU

I\$ w/ECC

In-cluster coherent heterogenous combination of real-time and application processors

Storage, ML, Cryptography specific **custom instructions**

Configurable memory architecture for app specific tuning

Tightly integrated memory for low latency access

Enhanced determinism for hard real-time constraints

Data Integrity using built-in fault tolerant mechanisms

Compute Acceleration Tightly coupled coherent accelerators or vector extensions

Cache lock capability for mission-critical computing

In-cluster coherent heterogenous combination of real-time and application processors

U7 Series

App + Real-Time **Processors** - Coherent in-cluster combinations Storage, ML, Cryptography specific custom instructions **Configurable memory** architecture for app specific tuning

real-time constraints PLIC РМР V39 MMU Debug I\$ w/ECC DTIM w/ECC Data Integrity using I\$ w/ECC D\$ w/ECC РМР built-in fault tolerant **Bus Matrix** mechanisms L2 Cache with ECC Peripheral Port System Port **Front Port** Memory Port **Compute Acceleration** Tightly coupled coherent accelerators **TileLink or AMBA** or vector extensions **Tightly integrated** 64-bit addressability **Optional FPU** Cache lock capability for mission-critical memory for low for **BIG DATA** Optimize compute area latency access applications to application need computing

In-cluster coherent heterogenous combination of real-time and application processors

Enhanced

determinism for hard

Storage, ML, Cryptography specific **custom instructions**

Configurable memory architecture for app specific tuning

Tightly integrated memory for low latency access

Storage, ML, Cryptography specific custom instructions

Configurable memory architecture for app specific tuning

Tightly integrated memory for low latency access

applications

to application need

Enhanced determinism for hard real-time constraints Data Integrity using

built-in fault tolerant mechanisms

Compute Acceleration Tightly coupled coherent accelerators or vector extensions

Cache lock capability for mission-critical computing

Storage, ML, Cryptography specific **custom instructions**

Configurable memory architecture for app specific tuning

Tightly integrated memory for low latency access

Enhanced determinism for hard real-time constraints

Data Integrity using built-in fault tolerant mechanisms

Compute Acceleration Tightly coupled coherent accelerators or vector extensions

Cache lock capability for mission-critical computing

Storage, ML, Cryptography specific **custom instructions**

Configurable memory architecture for app specific tuning

Tightly integrated memory for low latency access

Enhanced determinism for hard real-time constraints

Data Integrity using built-in fault tolerant mechanisms

Compute Acceleration Tightly coupled coherent accelerators or vector extensions

Cache lock capability for mission-critical computing

COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED

COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED

App processors High throughput 5G protocol stacks or SDN

Configurable memory architecture for optimizing QoS

Tightly integrated memory for 5G low latency response (1ms) and control routines

Hard RT capabilities Deterministic control of baseband processors

App + Real-Time Processors - Coherent in-cluster combinations

App processors High throughput 5G protocol stacks or SDN

Configurable memory architecture for optimizing QoS

Tightly integrated memory for 5G low latency response and control routines

Hard RT capabilities Deterministic control of baseband processors

App processors High throughput 5G protocol stacks or SDN

Configurable memory architecture for optimizing QoS

Tightly integrated memory for 5G low latency response (1ms) and control routines

Hard RT capabilities Deterministic control of baseband processors

COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED

SiFive Recently announced products

SiFive – the Broadest Embedded Core IP Portfolio

	ECores 32-bit embedded cores MCU, edge computing, AI, IoT	S Cores S torage , AR/VR, machine learning	64-bit application cores Linux, datacenter, network baseband
7 Series	E7 Series	S7 Series	U7 Series
Highest performance: 8-stage, dual-issue superscalar pipeline	 > E76-MC Compare to Cortex-M7 Quad-core 32-bit embedded processor > E76 Compare to Cortex-M7 	 > S76-MC No 64-bit Cortex equivalent Quad-core 64-bit embedded processor > S76 No 64-bit Cortex equivalent 	 > U74-MC Compare to Cortex-A55 MP4 Multicore: four U74 cores and one S76 core > U74 Compare to Cortex-A55
3/5 Series	High performance 32-bit embedded core	High-performance 64-bit embedded core	High performance Linux-capable processor
Efficient performance: 5–6-stage, single- issue pipeline	E34 Compare to Cortex-R5F E31 features + single-precision floating point	 > S54 No 64-bit Cortex equivalent S51 features + single-precision floating point 	> U54-MC Compare to Cortex-A53 Multicore application processor with four U54 cores and one S76 core
	> E31 Compare to Cortex-R5 Balanced performance and efficiency	S51 No 64-bit Cortex equivalent Low-power 64-bit MCU core	> U54 Compare to Cortex-A53 Linux-capable application processor
2 Series	E2 Series	S2 Series	
Power & area optimized: 2–3-stage, single- issue pipeline	E24 Compare to Cortex-M4F E21 + single-precision floating point	S21 No 64-bit Cortex equivalent Area-efficient 64-bit MCU core	
	 E21 Compare to Cortex-M4 E20 + User Mode, Atomics, Multiply, TIM 		
	> E20 Compare to Cortex-M0+ Our smallest, most efficient core		

SiFive

Rich Portfolio of IP : Internal IPs + Partner IPs

300+ Tape outs 1500+ Analog / Wireless Memories SerDes Processor/DSP Unique IP SiFive RISC-V cores SRAM (HS, HD, UHD, LP) CEI-11G, 25/28G, 56G, 112G **PVT** sensing Integrated ARM Cores **Register Files** JESD204B/C POR ARM Mail GPU ROM (Metal/VIA/Diff) Voltage detection Synopsys/ARC Efuse PCI Express 1/2/3/4/5 Voltage references Imagination XAUI, XFI, 10G-KR ECC and Repair Bluetooth AFE Cadence/Tensilica CAM/TCAM High Speed Memory Video DAC/ADC CEVA DSP 1T-SRAM DC-DC converters Custom AI Accelerators OTP/MTP SATA / SAS LDO voltage regulators eflash USB2.0/3.0/3.1 . Infiniband Interface & Soft-IP High Speed Backplane Specialty IO's Rapid I/O LPDDR5/4 PCIe Controller . Standard Cell DDR4/3 USB Controller . Libraries GDDR6 $|^{2}C/|^{2}S$ LVDS UART, WDT, RTC Fibre Channel ARM/Artisan HSTL 1.8/1.5 **AMBA** Peripherals SPI4-2, SPI5 TSMC QDR Primecells Synopsys/Virage SSTL-2/18/15 DesignWare Dolphin PCI, PCI-X 1.0 PCI, PCI-X, PCIe **High Performance Kits** PCI-X 2.0 Analog / Wireless Ethernet MAC USB 1.1 HDMI, MHL, eDP/DP GMII/RGMII UWB Nyquist ADC/DACs . PECL High Speed Memory Controller Sigma/delta ADC/DACs CML MIPI, SMIA, MDDI PLLs/Synthesizers UHS, SD Controllers I²C Fractional PLL 13C Multi-voltage WLAN AFE Oscillator IO Custom AFE MFIO (LVCMOS, SSTL, HSTL)

Audio CODEC ADC

CPRI

xGMII

ΗT

DVI

OBSAI

SFI4-2

DLLs

COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED

30

SiFive

Differentiated IP Solutions

31

SiFive Core IP: Embedding Intelligence Everywhere

 \rightarrow

Efficient Performance

Scalability

Embedding intelligence for a world of a Trillion Connected Devices

Differentiating Feature Set

Silicon verified. Market proven.

The most advanced configurable core IP and silicon solutions from the inventors of RISC-V.

Microcontrollers Embedded Linux Multicore

Networking Storage Computing AI Industrial IoT Consumer Automotive

www.sifive.com