
CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED.

RISC-V Security Architecture Introduction

6/17/2019

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 2 2 2

• RISC-V Security Philosophy & Mechanisms.

• How to adopt it in a simple Embedded System?

• How to adopt it in a RTOS?

• RISC-V needs an Open-Source Enclave.

Agenda

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 3 3 3

• Provide small set of hardware primitives that supports
multiple security uses

• Less hardware to build, less to get wrong

• Mechanisms to allow code to be pushed out of trusted
code base

Security Philosophy

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 4 4 4

• Machine mode (M-mode)
– AKA monitor mode, microcode mode, …

• Hypervisor-Extended Supervisor Mode (HS-Mode)

• Supervisor Mode (S-mode)

• User Mode (U-mode)

• Supported combinations of modes:
– M (simple embedded systems)

– M, U (embedded systems with security)

– M, S, U (systems running Unix-like operating systems)

– M, S, HS, U (systems running hypervisors)

Privilege Modes

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 5 5 5

Physical Memory Protection

Core
Bus Master

Device
Core

Bus Master
Device

PMP PMP IOPMP IOPMP

SoC Bus Matrix

Main Memory
Device control

registers
Device RAM

Machine Physical Address Space

0x
0…

00
0

0x
F…

FF
F

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 6 6 6

• M-mode has access to entire machine after reset

• Configures PMPs and IOPMPs to contain each active context inside a physical
partition

• Can even restrict M-mode access to regions until next reset

• M-mode can dynamically swap PMP settings to run different security
contexts on a hart

M-Mode controls PMPs

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 7 7 7

PMP Configuration

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 8 8 8

• Exceptions and interrupts can be selectively delegated in hardware out of M-
mode to a lower privilege mode

– Reduces size of TCB, interrupt handlers can run at full hardware speed but inside
a secure partition

– Some system might require some instructions to be emulated in M-mode

– Some operations will require M-mode execution

• e.g., cache flush for software coherence, power down, temporal security fence

Delegation

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 9 9 9

• M-mode runs secure boot and runtime monitor

• Embedded code runs in U-mode

• Physical memory protection (PMP) on U-mode accesses

• Interrupt handling can be delegated to U-mode code

– User-level interrupt support (N-extension)

• Provides arbitrary number of isolated security contexts

Secure Embedded Systems

(M, U modes)

M-mode monitor

U-mode
process 1

U-mode
process 2

Device 2
Interrupts

Device 1
Interrupts

PMP PMP
Other
Interrupts

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 10 10 10

• Problem: Want device to have different behavior based on accessor’s privilege mode

• Solution: Provide multiple memory maps, one per privilege mode. Use PMPs (and/or VM
system) to constrain security context to access correct aperture.

• Example:
0xC000_0000 M-mode access to device reg A

0xC008_0000 U-mode access to device reg A

• System memory bus does not need to transport metadata with every access, simpler
hardware

• Higher-privilege mode can easily emulate lower-privilege access

Mode-Specific Memory Apertures

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 11 11 11

• Machine-mode only
– 0xC000_0000

– Register A 0xC000_0000

– Register B 0xC000_0004

– Register D 0xC000_000C

• User + machine mode
– 0xC008_0000

• Register C 0xC008_0008

Mode-Specific Memory Apertures

A
B

C
D

M-mode

M-mode

M-mode

M,U-mode

0xC000_0000
0xC000_0004
0xC000_0008
0xC000_000C

0xC008_0000
0xC008_0004
0xC008_0008
0xC008_000C

PMP grants user
permission

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 12 12 12

Mode-Specific Memory Apertures

Core Core

PMP PMP

SoC Bus Matrix

Main Memory
Device control

registers
Device RAM

Machine Physical Address Space

0x
0…

00
0

0x
F…

FF
F

M-mode U-mode

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 13 13 13

• Without a PMP, RTOS tasks run in MACHINE-mode
– Access to all resources
– Done for performance reasons

• Drawbacks
– Reliability of the system is in the hands of the

application code
– ISRs and tasks have full access to the memory

address space
– Tasks can disable interrupts
– Task stacks can overflow without detection
– Code can execute out of RAM
– Susceptible to code injection attacks
– A misbehaved task can take the whole system down
– Expensive to get safety certification for the whole

product

Typical RTOS without Physical Memory

Protection

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 14 14 14

RTOS Context Switch without PMP

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 15 15 15

• Tasks are grouped by processes
– Can have multiple tasks per process

• ISRs have full access to memory
– Would be very complex otherwise

• Benefits:
– Memory of one process is not accessible to

other processes
• Unless they share a common memory space
• Some processes might not need to be safety

certified
– Less expensive and faster time-to-

market

– User tasks can’t disable interrupts
– Task stack overflows can be detected by the

PMP

Typical RTOS with Physical Memory Protection

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 16 16 16

RTOS with PMP– Each Task requires a Process

table

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 17 17 17

RTOS with PMP– OS updates PMP when Context

Switch

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 18 18 18

RTOS with PMP–User tasks run in USER-mode

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 19 19 19

• Strong security capabilities

– Authenticate itself (device)

– Authenticate software

– Guarantee the integrity and privacy of remote execution

• ● A cornerstone for building new security applications

– Confidential computing in the cloud (e.g., machine learning)

– Secure IoT sensor network

Secure Enclave as a Cornerstone Security

Primitive

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 20 20 20

• Existing enclave systems are proprietary and difficult to experiment with

– Closed-source commercial hardware (e.g., Intel SGX, ARM TrustZone)

– Lack of good research infrastructure

• A Lot of Challenges for Enclaves
– Hardware vulnerabilities: Intel SGX - ForeShadow (USENIX’18), AMD SEV – SEVered

(EuroSec’18)

– Side channel attacks and physical attacks

– Important questions: do patches really fix the problem? Are there any other issues?

• Open Source Design

– Provides transparency & enables high assurance

– Builds a community to help people work on the same problems

RISC-V needs an Open-Source Enclave

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 21 21 21

• The First Full-Stack Open-Source Enclave for Minimal Requirements
– Root of trust, security monitor, device driver, SDK, …

– Memory isolation, secure bootstrapping, remote attestation, …

• Memory Isolation only with Standard RISC-V Primitives
– RISC-V Privileged ISA (U-, S-, and M-mode support)

– Physical Memory Protection (PMP)

– Demonstrate in unmodified processors

• Open Framework: Built Modular & Portable for Easy Extension
– Platform-agnostic isolated execution environment

– Platform-specific threat models (cross-core side channels, untrusted external memory, etc)

– Use various entropy sources/roots of trust in different platforms

 github.com/keystone-enclave

Keystone: Open Framework for Secure Enclaves

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 22 22 22

• Consists of Two Privileged Software
 Bootloader (read-only, baked in CPU’s boot

ROM)
 Security monitor (verified by the bootloader)

• Bootloader
 Measures the security monitor

• Security Monitor (SM)
 Manages enclaves
 Enclave measurement for remote attestation
 Securely manages memory resources
 Manages enclave page tables
 Handles interrupts

• Keystone Driver (OS module)
 Provides Keystone API
 Coordinates the OS and the SM

Keystone Enclave Architecture

RISC-V Processor

Bootloader

OS

Untrusted

Region

Enclave

Region

Enclave(s)
Non-

enclave(s)

Security Monitor

T T
Enclave

Region

T

T

OS Page Table

Enclave Page Table

Secure

Boot

Memory

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED. 23 23 23

• BIST + Trusted boot from on-chip ROM

• Secure key storage and attack-resistant crypto

• PUFs

• Tamper-detect circuits

• True Random-Number Generators (TRNG)

• Memory encryption and integrity checks

Non-ISA-Specific Security Mechanisms

