
Professional development tools

for RISC-V

Ryan Sheng, IAR Systems (China)

Future-proof software tools and service

for embedded development

36 years in the industry

Listed on NASDAQ Stockholm

2018
 Sales SEK 385.2M

 Operating profit SEK 115.6M

 Net profit SEK 87.6M

 Leading embedded software

development tools vendor

 Dedicated team of support,

sales and service worldwide

 32% of revenue invested in

R&D

Distributor

representation in

40+ countries

Uppsala

Munich

Paris

Tokyo

Seoul

Shanghai

Dallas

Boston

Los Angeles

San Francisco

 46,000+ customers

Large and loyal customer base worldwide

Industrial automation

Medical

Wearables

Consumer electronics

Automotive

Internet of Things

 95% recurring customers

IAR Embedded Workbench
Complete C/C++ compiler and debugger toolchain

Most widely used development tools for embedded applications

User-friendly IDE features and broad ecosystem integration

Industry leading code optimization

technology

Comprehensive debugger

Integrated code

analysis tools

ISO/ANSI C/C++

compliance with

C18 and C++14

Global support

and training

service

Support for 12,000+ devices

40+ architectures
All available 8-,16- and 32-bit MCUs

Cortex-M0

Cortex-M0+

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-M7

Cortex-M23

Cortex-M33

Cortex-R4

Cortex-R5

Cortex-R52

Cortex-R7

Cortex-R8

Cortex-A5

Cortex-A7

Cortex-A8

Cortex-A9

Cortex-A15

ARM11

ARM9

ARM7

SecurCore

8051

MSP430

AVR

AVR32

RX

RL78

RH850

78K

SuperH

V850

R32C

M32C

M16C

R8C

H8

STM8

ColdFire

HCS12

S08

MAXQ

CR16C

SAM8

RISC-V

Partnership with SiFive

IAR Embedded Workbench for

RISC-V

Milestones

Q1 2018
Joins the

RISC-V

foundation

Q3 2017
Small pre-dev

on compiler

for RISC-V

2016
Starts

exploring

RISC-V

Q2 2018
Official start

of the

development

project

Q1 2019
Beta

edition for

partners

Q2 2019
First

release

TBD
Functional

safety

release

Device support

RV32I Base Integer Instruction Set

Supported Extensions:

M – integer mul & div

F – single precision float

D – double precision float

C – compressed instruction

Support for SiFive 32-bit E Cores

E20 E21 E24

E31 E34 E76

Out-of-the-box experience on

Xilinx Artix-7 Arty 35T/100T board

* More cores and devices will be

added in later versions

Compiler

• Proprietary design based on over 36 years of experience

• Based on a platform that is common among different targets
to handle global optimizations, language compliance, etc.

– Different architecture, one solution

– Easy source code migration among different architectures

• Target unique backend for specific adaptations and
optimizations

• RISC-V specifics

– Primary focus will be supporting standard extensions

– Initial prioritization on optimizations is code size

Challenges on optimization

• Size
– Compared to more complex instruction sets, RISC-V have

some challenges especially when it comes to code size

– Arithmetic with higher resolution than the natural data size

yields larger code

– Absence of carry flags and instructions to save and restore

multiple registers are other examples

• Speed
– When it comes to speed, RISC-V are competitive

Our initial target will be on reduced code size for small

embedded systems. Our main focus have always been

to supply the best code size and speed on the market.

IAR C/C++ Compiler

Well-tested
Commercial test suites
 Plum-Hall Validation test suite
 Perennial EC++VS
 Dinkum C++ Proofer

In-house developed test suite
>500,000 lines of C/C++ test
code run multiple times
 Processor modes
 Memory models
 Optimization levels

Language standards
 ISO/IEC 14882:2015

(C++14, C++17)

 ISO/IEC 9899:2018 (C18)

 ANSI X3.159-1989 (C89)

 IEEE 754 standard for

floating-point arithmetic

Option to

maximize

speed with

no size

constraints

The linker can

remove unused

code

Multiple

optimization

levels for code

size and

execution

speed

Balance between size

and speed by setting

different optimizations

for different parts of the

code

Major features of the

optimizer can be

controlled individually

Multi-file compilation allows

the optimizer to operate on

a larger set of code

Object Code

Optimizations
C Source

Parser

Code Generator

Assembler

Compiler

Function

inlining

Dead code

elimination

Loop

unrolling

Peephole

Cross call

Scheduling

Linker

High-Level Optimizer

Low-Level
Optimizer LW A0,-0x0(GP)

C.ADDI A0,-0xF

SW A0,-0x4(GP)

Target Code

Intermediate Code

01001000111001101001

=

- x

y 15

x = y - 15;

Link time

optimizations

Speed, size or both?

Optimization

Common sub-expressions Speed ↑ Size ↓

Loop unrolling Speed ↑ Size ↑

Function inlining Speed ↑ Size ↑

Code motion Speed ↑ Size →

Dead code elimination Speed → Size ↓

Static clustering Speed ↑ Size ↓

Instruction scheduling Speed ↑ Size →

Peephole Speed ↑ Size ↓

Cross call Speed ↓ Size ↓

Effect

Current code size benchmark

icc options: --core=RV32IMAC -e –Ohz

 --dlib_config=full

gcc options: -Os -D NDEBUG -march=rv32imac

 -mabi=ilp32 -mcmodel=medlow

 --specs=nano.specs

Internal benchmark

shows ~20% smaller

code in average !!!

C-SPY debugger overview

IAR Embedded

Workbench
C-SPY

Simulator

driver
Simulator

I-jet

driver
I-jet

Target

HW

IAR C-SPY Debugger

3rd-party

driver

JTAG

emulator

Target

HW

SDK

interface

Target system with application SW

IAR Systems

3rd-party

RTOS

Awareness etc.

C-SPY debugger

Dockable

windows

and tab

groups

Integrated debugger for source

and disassembly debugging

Stack usage

Watch

Locals

Registers Semihosted

terminal I/O

Complex

breakpoints

 C like macro system

 Built-in simulator

 RTOS awareness

 Trace

I-jet in-circuit debugging probe

• Support RISC-V and Arm cores

• Hi-speed USB 2.0 interface (480Mbps)

• Target power of up to 400mA can be supplied

from I-jet with overload protection

• Target power consumption can be measured

with ~200µA resolution at 200kHz

• JTAG and Serial Wire Debug (SWD)

clocks up to 32MHz

• No limitation on the CPU clock speed

• Debug adapter (ADA-MIPI20-RISCV12)

C-STAT: static code analysis

CWE (Common Weakness Enumeration): http://cwe.mitre.org

CERT (Computer Emergency Response Team): http://www.cert.org

• Advanced analysis of C/C++ code

• Fully integrated within IAR Embedded

Workbench

• Check compliance with MISRA C:2004,

MISRA C++:2008 and MISRA C:2012

• Include ~250 checks mapping to

hundreds of issues covered by CWE

and CERT C/C++

• Intuitive and easy-to-use settings with

flexible rule selection

• Support for command line execution

• Extensive and detailed documentation

http://cwe.mitre.org/
http://cwe.mitre.org/
http://cwe.mitre.org/
http://www.cert.org/
http://www.cert.org/

High level timeplan

Future releases

• Improved optimizations for code size and speed

• Atomics

• RV32E

• RV64I

• C RISC-V ABI compliance

• C-RUN (runtime code analysis)

• Trace (depending on spec maturity)

• Functional safety certification

• 3rd-party debug probes

Q4 2019

~

Q2 2020

Demonstration

USB

Xilinx Artix-7

Arty FPGA Kit

编译/链接/下载/调试

I-jet
JTAG

SiFive

E31 Core

Thanks for your attention!

www.iar.com/riscv

