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• RISC-V Security Philosophy & Mechanisms.  

• How to adopt it in a simple Embedded System? 

• How to adopt it in a RTOS? 

• RISC-V needs an Open-Source Enclave. 

 

Agenda 
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• Provide small set of hardware primitives that supports 
multiple security uses 

• Less hardware to build, less to get wrong 

• Mechanisms to allow code to be pushed out of trusted 
code base 

 

Security Philosophy 
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• Machine mode (M-mode) 
– AKA monitor mode, microcode mode, … 

• Hypervisor-Extended Supervisor Mode (HS-Mode) 

• Supervisor Mode (S-mode) 

• User Mode (U-mode) 

 

• Supported combinations of modes: 
– M         (simple embedded systems)  

– M, U        (embedded systems with security) 

– M, S, U        (systems running Unix-like operating systems) 

– M, S, HS, U         (systems running hypervisors) 

Privilege Modes 
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• M-mode has access to entire machine after reset 

• Configures PMPs and IOPMPs to contain each active context inside a physical 
partition 

• Can even restrict M-mode access to regions until next reset 

• M-mode can dynamically swap PMP settings to run different security 
contexts on a hart 

 

 

 

 

M-Mode controls PMPs 
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PMP Configuration 
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• Exceptions and interrupts can be selectively delegated in hardware out of M-
mode to a lower privilege mode 

– Reduces size of TCB, interrupt handlers can run at full hardware speed but inside 
a secure partition 

– Some system might require some instructions to be emulated in M-mode 

– Some operations will require M-mode execution 

• e.g., cache flush for software coherence, power down, temporal security fence 

 

Delegation 
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• M-mode runs secure boot and runtime monitor 

• Embedded code runs in U-mode 

• Physical memory protection (PMP) on U-mode accesses 

• Interrupt handling can be delegated to U-mode code 

– User-level interrupt support (N-extension) 

• Provides arbitrary number of isolated security contexts 

Secure Embedded Systems 

(M, U modes) 
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• Problem: Want device to have different behavior based on accessor’s privilege mode 

• Solution: Provide multiple memory maps, one per privilege mode.  Use PMPs (and/or VM 
system) to constrain security context to access correct aperture.  

 

• Example: 
0xC000_0000  M-mode access to device reg A 

0xC008_0000  U-mode access to device reg A 

 

• System memory bus does not need to transport metadata with every access, simpler 
hardware 

• Higher-privilege mode can easily emulate lower-privilege access 

Mode-Specific Memory Apertures 
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• Machine-mode only 
– 0xC000_0000 

– Register  A 0xC000_0000 

– Register  B 0xC000_0004 

– Register  D 0xC000_000C 

 

• User + machine mode 
– 0xC008_0000 

• Register C 0xC008_0008 

 

Mode-Specific Memory Apertures 
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• Without a PMP, RTOS tasks run in MACHINE-mode 
– Access to all resources 
– Done for performance reasons 

• Drawbacks  
– Reliability of the system is in the hands of the 

application code  
– ISRs and tasks have full access to the memory 

address space 
– Tasks can disable interrupts 
– Task stacks can overflow without detection 
– Code can execute out of RAM 
–  Susceptible to code injection attacks 
–  A misbehaved task can take the whole system down 
–  Expensive to get safety certification for the whole 

product  
 

Typical RTOS without Physical Memory 

Protection 
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RTOS Context Switch without PMP 
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• Tasks are grouped by processes 
– Can have multiple tasks per process 

•  ISRs have full access to memory 
– Would be very complex otherwise 

• Benefits:  
– Memory of one process is not accessible to 

other processes 
• Unless they share a common memory space 
• Some processes might not need to be safety 

certified 
– Less expensive and faster time-to-

market 

– User tasks can’t disable interrupts 
– Task stack overflows can be detected by the 

PMP 
 

Typical RTOS with Physical Memory Protection 
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RTOS with PMP– Each Task requires a Process 

table 
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RTOS with PMP– OS updates PMP when Context 

Switch 
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RTOS with PMP–User tasks run in USER-mode 
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• Strong security capabilities 

– Authenticate itself (device) 

–  Authenticate software 

– Guarantee the integrity and privacy of remote execution 

• ● A cornerstone for building new security applications 

– Confidential computing in the cloud (e.g., machine learning) 

– Secure IoT sensor network 

Secure Enclave as a Cornerstone Security 

Primitive  
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• Existing enclave systems are proprietary and difficult to experiment with 

– Closed-source commercial hardware (e.g., Intel SGX, ARM TrustZone) 

–  Lack of good research infrastructure 

• A Lot of Challenges for Enclaves  
–  Hardware vulnerabilities: Intel SGX - ForeShadow (USENIX’18), AMD SEV – SEVered 

(EuroSec’18) 

– Side channel attacks and physical attacks 

– Important questions: do patches really fix the problem? Are there any other issues? 

• Open Source Design 

– Provides transparency & enables high assurance 

– Builds a community to help people work on the same problems 

RISC-V needs an Open-Source Enclave 
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• The First Full-Stack Open-Source Enclave for Minimal Requirements 
– Root of trust, security monitor, device driver, SDK, … 

– Memory isolation, secure bootstrapping, remote attestation, … 

• Memory Isolation only with Standard RISC-V Primitives 
– RISC-V Privileged ISA (U-, S-, and M-mode support) 

– Physical Memory Protection (PMP) 

–  Demonstrate in unmodified processors 

•  Open Framework: Built Modular & Portable for Easy Extension 
–  Platform-agnostic isolated execution environment 

– Platform-specific threat models (cross-core side channels, untrusted external memory, etc) 

– Use various entropy sources/roots of trust in different platforms 

                                                

                                                 github.com/keystone-enclave  

Keystone: Open Framework for Secure Enclaves 
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• Consists of Two Privileged Software 
 Bootloader (read-only, baked in CPU’s boot 

ROM) 
 Security monitor (verified by the bootloader) 

• Bootloader 
 Measures the security monitor 

• Security Monitor (SM) 
 Manages enclaves 
 Enclave measurement for remote attestation 
 Securely manages memory resources 
 Manages enclave page tables 
 Handles interrupts 

• Keystone Driver (OS module) 
 Provides Keystone API 
 Coordinates the OS and the SM 

 

Keystone Enclave Architecture 
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• BIST + Trusted boot from on-chip ROM 

• Secure key storage and attack-resistant crypto 

• PUFs 

• Tamper-detect circuits 

• True Random-Number Generators (TRNG) 

• Memory encryption and integrity checks 

Non-ISA-Specific Security Mechanisms 


