

SiFive RISC-V Core IP

Product Map

$\overline{\Rightarrow}$	2 Series Power & area optimized 2–3-stage single-issue pipeline	3/5 Series Efficient performance 5–6-stage single-issue pipeline	7 Series High performance 8-stage, dual-issue superscalar pipeline	8 Series Maximum performance 3-wide 12-stage out-of- order superscalar pipeline
E Cores	E2 Series	E3 Series	E7 Series	
32-bit embedded MCU, edge computing, AI, IoT	Our smallest, most efficient cores > E24, E21, E20 Standard Cores Compare to Cortex-M0+, M4, M4F	 Balanced performance and efficiency E34, E31 Standard Cores Compare to Cortex-R5, R5F 	High performance 32-bit embedded cores > E76, E76-MC Standard Cores Compare to Cortex-M7	
S Cores	S2 Series	S5 Series	S7 Series	
64-bit embedded 8-stage, dual- issue pipeline	Area-optimized 64-bit microcontrollers > S21 Standard Core No Arm equivalent	Low-power 64-bit microcontrollers > S51, S54 Standard Cores Compare to Cortex-R5, R5F	 High performance 64-bit embedded cores > S76, S76-MC Standard Cores Compare to Cortex-R8 	
U Cores		U5 Series	U7 Series	U8 Series
64-bit application cores Linux, datacenter, network baseband		Linux-capable application processors > U54, U54-MC Standard Cores Compare to Cortex-A53	High performance Linux- capable processors > U74, U74-MC Standard Cores Compare Cortex-A55, A55 MP4	Highest performance application processors > U84, U87 Standard Cores Compare to Cortex-A72

SiFive Core IP 2 series:

SiFive's **smallest** and most **efficient** RISC-V processor IP

E2 Series Features

• E2 Series core architectural overview

- RV32(E)IMAFDCV capable core
- 2-3 stage, optional, Harvard Pipeline

• Efficient memory accesses

- Ability to add multiple outbound Ports
- Optional Tightly Integrated Memory (TIM) and Optional Instruction Cache
- First RISC-V core with support for the RISC-V Core Local Interrupt Controller (CLIC)
 - Provides hardware interrupt prioritization and nesting
 - Only 6 cycles to execute the first instruction of IRQ
- SiFive Custom Instruction Extension (SCIE)
 - Easily add support for custom instructions

S2 Series Features

• S2 Series core architectural overview

- RV64IMAFDCV capable core
- 2-3 stage, optional, Harvard Pipeline
- Same familiar pipeline and feature set as the the E2 series but with 64-bit performance
 - Increased DMIPs/MHz to 1.6 DMIPs/MHz
 - 64-bit arithmetic operations
 - Double the Load/Store bandwidth
- Easier integration into larger SoCs
 - S2 Series can directly address >32-bit physical address space
- No impact on code size thanks to RISC-V Compressed instruction set
 - The RISC-V RV64IC ISA uses the same 16-bit and 32-bit instructions as the RV32IC ISA

50% Smaller Core Area than a similarly spec'd S5

Area Constrained

Use **SiFive Core Designer** to configure the E2 Series Core to be as small as 13.5k Gates

Balanced

The E20 Standard Core is 90% the performance of Cortex-M3 in 60% of the area

High Performance

The E21 Standard Core which is 12% higher performance than Cortex-M4 in 80% of the area

64-bit MCU

S2 Series is the world's smallest 64-bit CPU offering ease of integration and efficient performance

And Everything In-Between

2 Series - Impact of Configuration Options on Area

Choose between ISA

- RV32EC 16 integer registers
 - less area, slight performance impact
- RV32IC 32 integer registers
 - larger area, higher performance

Choose the interrupt controller

- CLINT Simple controller
 - Up to 16 direct interrupts, in addition to architectural Timer and Software interrupts, with static priorities
 - Requires external controller for additional interrupts
- CLIC Featureful controller
 - Up to 1008 interrupts
 - Dynamic prioritization with hardware vectoring and nesting
 - Can also connect an external controller for platform level interrupt sharing

Choose Performance Options

- 1 or 2 core interfaces Von Neumann vs Harvard Architecture
- Multiplication Performance
- Hardware Floating Point Unit

Option	Gates (k)	Notes
RV32EC	13.5	Base Configuration
RV32IC	18.6	Base Configuration
CLINT	2.5	Basic irg controller with 16 irg
CLIC w/32 IRQ and 2 priority		· · · · · · · · · · · · · · · · · · ·
bits	6.0	E20 config
CLIC w/127 IRQ and 4 priority		
bits	16.3	E21 config
Seperate Data Interface	13.2	Harvard Architecture, E21 config
1 Cycle Mul	3.9	Includes 1 bit/cycle with early out DIV
4 Cycle Mul	1.7	Includes 1 bit/cycle with early out DIV
8 Cycle Mul	1.2	Includes 1 bit/cycle with early out DIV
FPU	31.7	
TL2AHB	2.4	per bridge
Debug	7.0	
all data from trails at 28HPC at 50MHz		
Gate Used (um2): ND2D0BWP35P140LV	Т	0.37

All of this and more configured directly from the web via SiFive Core Designer

TileLink, AXI, AHB-Lite, APB

The E2 Series can be configured to meet your application requirements								
E2 Series VS ARM Cortex-M Comparison Table								
	E2 Series Options	E20 Standard Core	E21 Standard Core	Cortex-M0+	Cortex-M3	Cortex-M4		
Dhrystone (using GCC)	From 1.07 to 1.47 DMIPS/MHz	1.2 DMIPS/MHz	1.47 DMIPS/MHz	0.95 DMIPS/MHz	1.25 DMIPS/MHz	1.25DMIPS/MHz		
CoreMark (using GCC)	Up to 3.1	2.5 CoreMarks/MHz	3.1 CoreMarks/MHz	1.8 CoreMarks/MHz	2.76 Coremarks/MHz	2.76 CoreMarks/MHz		
Integer Registers	31 Useable, 16 Useable Option	31 Useable	31 Useable	13 Useable	13 Useable	13 Useable		
FPU	Optional FPU	None	None	None	None	Optional		
Hardware Multiply and Divide	Yes, Optional	Yes	Yes	Hardware Multiply Only	Yes	Yes		
Memory Map	Customizable	SiFive Freedom Platform	SiFive Freedom Platform	Fixed ARMv6-M	Fixed ARMv7-M	Fixed ARMv7-M		
Atomics	Optional: RISC-V standard AMO support via Peripheral Port and TIMs	No Peripheral Port	RISC-V AMO standard support via Peripheral Port	None	Bit-band and Load/Store Exclusive	Bit-band and Load/Store Exclusive		
Number of Interrupts	Up to 1008 peripheral interrupts	32	127	32	240	240		
Interrupt Latency into C Handler	6 Cycles – CLIC Vectored Mode	6 Cycles	6 Cycles	15 Cycles	12 Cycles	12 Cycles		
Memory Protection	Optional up to 16 Regions	N/A	4 Regions	Optional, ARMv6m	0 or 8 Region	0 or 8 Region		
Tightly Integrated Memory	Optional 2 Banks	None	2 Banks	No	No	No		
Bus Interfaces	Configurable: Up to 3 masters and 1 slave with support for	1 Master	2 Master, 1 Slave	1 AHB-Lite	3 AHB-Lite	3 AHB-Lite		

S5Series **E3**Series **U5**Series **SiFive Core IP 32-bit** 64-bit 64-bit 3 and 5 series: Application **Embedded** Embedded **Processors Processors Processors** The world's most deployed **RISC-V** processor IP **Efficient Performance** Coherent, Heterogenous, Multicore Hard Real-time capabilities Configurable Efficient Mature

E3/S5 Overview

High Performance, efficient, 32bit and 64bit RISC-V MCUs

• Flexible memory architecture

- I-Cache can be reconfigured into I-Cache + ITIM
- DTIM for fast on Core Complex Data Access (D-Cache option also available)
- Off Core Complex memory access through Memory, System and Peripheral Ports

Multicore Support

- Pre-integrated and verified by SiFive
- Supports up to 8+ cores

• Fast Interrupts

- E3/S5 with Interrupt Handlers in ITIM can enter an ISR in **10** cycles
- CLIC Interrupt Controller for hardware interrupt prioritization and nesting

• Security and Safety

- Up to 16 region physical memory protection
- Optional ECC/Parity for all Level 1 and Level 2 memories

Real Time Capabilities

- Software enable/disable of dynamic branch prediction
- Deterministic capabilities in the L1 and L2 Memories

	E31 (AHB)*	S51 (AXI)**	Cortex-R5***
28nm Area	0.066m2	0.126mm2	0.21mm2
Max Frequency	1.5GHz Typical	1.5GHz Typical	1.4GHz
Efficiency	155 DMIPS/mW	109 DMIPS/mW	62 DMIPS/mW

*E31 w/ AHB Ports, PLIC w/ 127 IRQ, Debug w/ 4 hw breakpoints, CLINT, area does not include RAMs **E51 w/ AXI Ports, PLIC w/ 255 IRQ, Debug w/ 4 hw breakpoints, CLINT, area does not include RAMs ***unknown configuration: https://developer.arm.com/products/processors/cortex-r/cortex-r5

HiFivel Rev B: Embedded RISC-V Dev Board

- SiFive FE310-G002 (built in 180nm)
 - Uses the E31 Standard Core
- Operating Voltage: 3.3 V and 1.8 V
- Input Voltage: 5 V USB or 7-12 VDC Jack
- IO Voltages: 3.3 V only
- Digital I/O Pins: 19
- PWM Pins: 9
- SPI Controllers/HW CS Pins: 1/3
- Hardware I2C: 1
- UART: 2
- External Interrupt Pins: 19
- External Wakeup Pins: 1
- Flash Memory: 4 MB Quad SPI
- Host Interface (microUSB): Program, Debug, and Serial Communication

Order on Crowdsupply

"SiFive's RISC-V Core IP was **1/3 the power** and **1/3 the area** of competing solutions, and gave FADU the flexibility we needed in optimizing our architecture to achieve these groundbreaking products."

-J. Lee, FADU CEO

"SiFive's **64-bit S Cores** bring their hallmark efficiency, configurability and **silicon-proven** Core IP **expertise** to 64-bit embedded architectures"

-Ted Speers, Head of Product Architecture and Planning, Microsemi, a Microchip Company

U5 Series Features

64-bit RISC-V Multi-Core Linux-Capable

- U5 Series allows for instantiation of up to 9 U5 and/or S5 cores as well as a configurable Level 2 Cache
- U5 Core Architectural Features
 - RV64GCN capable core with Sv39 Virtual Memory Support
 - Single Issue, in-order 5-6 stage Harvard Pipeline
 - Optional SECDED ECC support on Level 1 and Level 2 memories
- Flexible memory system allows for application specific resource partitioning
 - L2 can be split into part cache, part fast addressable RAM
- Configurable, coherent, S5X minion cores can provide a variety uses
 - System boot and monitor, Sensor Hub/Fusion, Security Co-Processor
- Real Time Capabilities
 - Software enable/disable of dynamic branch prediction
 - Deterministic L1 and L2 Memories
- Broad market applications
 - General purpose embedded, industrial, IoT, high-performance realtime embedded, automotive

13

HiFive Unleashed: World's First Multi-Core RISC-V Linux Dev Board

- SiFive FU540-C000 (built in 28nm)
 Uses the U54-MC Standard Core
- 8 GB 64-bit DDR4 with ECC
- Gigabit Ethernet Port
- 32 MB Quad SPI Flash
- MicroSD card for removable storage
- MicroUSB for debug and serial communication
- Digital GPIO pins
- FMC connector for future expansion with add-in cards

Order now at crowdsupply.com for \$999

U54 Performance - Comparable to Cortex-A53

Cortex-A53 relative to the U540 at the same frequency U54 SPECint 2006 - 3.40 2.5 Measured at 1.5GHz on the U540-C000 Silicon on the HiFive Unleashed 2 1.5 HiFive Unleashed – SiFive FU540-C000 SoC 4x SiFive U54 1.5GHz GCC 8 pre-release 0.5 Pine A64 LTS – Allwinner R18 SoC 45-80bmlt 429.met \$56 hmmer 458.518rm libquantum 101.bilp2 403.8cc 64.h26hret 4x Cortex-A53 1.2GHz GCC 8 pre-release The single-issue, in-order U54 core approaches the HiFive Unleashed Pine A64 LTS performance of a Cortex-A53 in HALF the area SPECint 2006 Raw Score Pine A64 LTS @ 1.2GHz HiFive Unleashed @ 1.5GHz 3.15 3.2 3.25 3.3 3.35 3.4 3.45

•

.

SiFive

15

SPECint 2006

E7 and S7 Series Features

Ultra High Performance 64-bit RISC-V Embedded Processor

• 7 core architectural features

- RV32/64GCV capable core
- Dual Issue, in-order 8 stage Harvard Pipeline
- Performance and Area
 - DMIPS 2.5 DMIPS/MHz
 - Coremark 5.1 CoreMarks/MHz
 - Core Area is only 30% larger than equivalent 3/5 Series Core
- Very flexible memory system
 - Optional I\$ and D\$
 - Optional I and D TCM interfaces
 - Optional Fast IO (FIO) for low latency, high-bandwidth, memory mapped IO

• Functional Safety and Security and Real Time features

- SECDED ECC on all L1 and L2 memories
- Programmatically clear and/or disable dynamic branch prediction for deterministic execution and enhanced security
- Multi-Core Capable with Coherency and optional L2
- High end embedded applications
 - SSD Controllers
 - IoT Edge Computing
 - Wireless Radios
 - Automotive/Industrial

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED

7 Series Memory Subsystem

- Single-cycle memories on the Instruction or Data bus
- Can have **both** an ITIM and I\$
- Can have *either* a DTIM or D\$
- Both supports Atomic instructions
- Other masters can access ITIM/DTIM with additional latency
- Data Local Store
 - 4-cycle Load-Use for data accesses with pipelined loads/stores
 - Instruction accesses incur additional latency
 - Available in addition to a D\$
 - Runs at the same frequency as the Core
 - Supports Atomics
 - Other Masters can access DLS with additional latency
- Fast IO Option 2x Load-Store Bandwidth
 - Fast IO improves throughput of MMIO transactions in Core Complex memory subsystem by enabling a number of uArchitectural MMIO optimizations in the 7 Series pipeline
 - Will have an impact on top end frequency

	Ι\$	D\$	ITIM	DTIM	DLS
Load-use delay (cycles)	n/a	0	0	0	4
Support for Atomic Operations	yes	yes	yes	yes	yes

 \blacksquare

E7/S7 vs R5/R8

Feature	E7	S7	Arm Cortex-R5	Arm Cortex-R8
Instruction set architecture	RV32IMAFC	RV64IMAFDC	Armv7-R	Armv7-R
DMIPS/MHz	2.3/3.73	2.5/4.27 1.67/2.45		2.50/3.77
Cores	Up to 8 Cores AMP/SMP	Up to 9 Cores AMP/SMP	2-core AMP	Up to 4 Cores AMP/SMP
Heterogeneous	No; cannot be combined with U7 series cores	Yes; can be combined with U7 series cores	No; cannot be combined with Cortex-A cores	No; cannot be combined with Cortex-A cores
Pipeline	8-stage, dual issue, in order	8-stage, dual issue, in order	8-stage dual issue, in order	11-stage, superscalar, out of order
TIM	up to 256KB ITIM up to 256KB DTIM up to 512KB DLS	up to 256KB ITIM up to 256KB DTIM up to 512KB DLS	up to 8MB ITCM up to 8MB DTCM	up to 8MB ITCM up to 8MB DTCM
Caches	I-Cache:up to 64KB D-Cache:up to 256KB	I-Cache:up to 64KB D-Cache:up to 256KB	I-Cache:4-64KB D-Cache:4-64KB	I-Cache:4-64KB D-Cache:4-64KB
L2 Cache Controller	Optional, Pre-integrated up to 4MB,32-way,4Banks	Optional Pre-integrated up to 4MB,32-way,4Banks	external	external
FPU	single or double FP	single or double FP	Double Precision FPU	Double Precision FPU
MPU	up to 16-Regions	up to 16-Regions	up to 16-Regions	up to 24-Regions
Bus Matrix	Pre-integrated, Configurable	Pre-integrated, configurable	No	No
ECC	on L1/L2	on L1/L2	on L1/AXI bus ports	on L1/AXI bus ports
Frequency	FrequencyE76: Typical: 1.4GHz aS76: Typical: 1.3GHzE76: Worst: 850MHz aS76: Worst: 825MHz		AFAP: 1.4GHz ^{b1} FEATURED: 935MHz ^{b2}	AFAP: 1.5GHz ^{b1}
Area	E76: 0.174/0.09 mm ² ^c	S76: 0.231/0.154 mm ² c	0.21 mm ^{2 d}	0.33 mm ^{2 d}
		b. 28HPM, b1.sc12mc base svt (3 b2.sc9mc base svt c31	cal: TT Corner @ 0.9V, 25C ,Worst: Slow/Slov 8.2%) /lvt (36.4%) c31, sc12mc hpk svt (5.8% . (95.2%), sc9mc_cln28hpm_hpk_svt_c31 (4 lex/Core Only, see standard core configurat	6) / lvt (9.6%) c31 8%)

d. Includes Core+RAM+Routing, smallest configuration

CONFIDENTIAL - COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED.

• • •

Linley MPR – "SiFive Raises RISC-V Performance"

	🗶 💌 🗂 🛞 Q Search
E The Linley Group	
MICROPROCI	SSOR <u>report</u>
Insigh	tful Analysis of Processor Technology
SIFIVE RAISES RISC	C-V Performance
Series 7 Comprises First	Superscalar RISC-V CPUs
By Bob Wheeler (1	November 12, 2018)
Designing a CPU that scales from microcontrollers to multicore processors is difficult, but that's SiFive's ap- proach with its 7 Series. At the Linley Fall Processor Con- ference, the RISC-V startup revealed its latest CPU. The dual-issue in-order design is its most compex core vet.	Rocket Separation The new dual-issue 7 Series CPU represents a departure from SiFive's previous designs, which are based on the open-source Rocket CPU. The US4 employs a simple five- stage scalar proline that achieves 15GHz in TSMC 28nm

SiFive Raises RISC-V Performance.pdf (page 1 of 3)

dual-issue in-order design is its most complex core yet, moving into the same class as Arm's "little" Cortex-A family. SiFive will offer versions for real-time embedded processing as well as Linux applications. At the high end, the company's new U74MC intellec-

tual-property (IP) core builds on the U54, which already offers multicore configurations and Linux compatibility. The standard U74MC includes a double-precision floatingpoint unit (FPU). Up to nine of the 64-bit cores can share an L2 cache with ECC protection. For deeply embedded designs, the company introduced the 32-bit E76 and 64-bit S76, which include a single-precision FPU. They improve performance compared with the existing E31 and E51 (see MPR 6/5/17, "SiFive Begins Licensing Cores"). RTL for the E76. S76, and U74 is now available.

Following a \$50 million funding round announced in April. SiFive has sharpened its focus on IP for embedded applications. It also disclosed a li with Western Digital, a strategic company announced standard 7 differentiation comes from con can start with the specification f and add or remove standard

focus on IP for embed- ed a license agreement investor. Although the Series cores, part of its figurability. Customers or an off-the-shelf core	greement a second data-memory-access stage to enable larger Ll ci ough the and scratchpad memories. A second decode stage han art of its superscalar dispatch and leaves headroom for future o mizations that combine multiple instructions in each is			r L1 cache je handles ture opti-			
Fetch Fetch Decode	Decode	ALU	D-Cache	D-Cache	WB		
Queue	\rightarrow	Early ALU	Wait	Late ALU	WB		
Quodo	L,	FP Reg	FPU1	FPU2	FPU3	WB	

technology (see MPR 10/9/17, "RISC-V U54 Runs Linux").

It implements the RV64I base ISA plus the multiply and di-

vide (M), atomic (A), and compressed (C) extensions. Op-

tionally, it handles single-precision (F) and double-precision

(D) floating-point extensions. SiFive is developing a vector

unit for future 7 Series cores, but the RISC-V vector (V) ex-

tensions remain incomplete. (The ISA specification abbrevi-

ates the combination of I, M, A, F, and D instructions as G,

to eight stages and adds multiple execution units for su-

perscalar operation. The first issue slot performs memory

operations (load/store) and simple integer operations,

whereas the second slot performs any integer operation

(including multiply/divide), branch resolution, and float-

November 2018

As Figure 1 shows, the 7 Series extends the pipeline

denoting a general-purpose scalar instruction set).

and power as the customer ap-Figure 1. SiFive 7 Series pipeline. WB=writeback. Adding a second memory-access cycle in the fetch and data-cache stages enables larger TCMs without reducing clock speeds.

© The Linley Group • Microprocessor Report

instruction extensions, change memory details, and edit other features. Within weeks, SiFive delivers RTL for a core that consumes only as much area

plication allows.

	SiFive E76	Arm Cortex-M7	SiFive U74	Arm Cortex-A55
Instruction Set	32-bit RISC-V	32-bit Arm v7-M	64-bit RISC-V	64-bit Arm v8
Max Clock Freq	1.6GHz†	1.1GHz	1.6GHzt	1.6GHzt
Max IPC	2 IPC	2 IPC	2 IPC	2 IPC
CoreMark Perf	4.9CM/MHz	5.0CM/MHz	4.9CM/MHz	4.4CM/MHzt
Die Area*	0.065mm ²	0.067mm ²	0.22mm ²	0.65mm ² †

Table 1. SiFive-versus-Arm CPU comparison. The new dual-issue 7 Series delivers integer performance on a par with that of Arm's comparable CPUs. All metrics assume TSMC 28nm HP technology. *Without memories. (Source: vendors, except **†The Linley Group estimate**)

> source: https://www.linleygroup.com/mpr/

SiFive 7 Series - Silicon Proven Core IP

SiFive

U7 Series Features

High Performance 64-bit RISC-V Multi-Core Application Processor

- U7 allows for instantiation of up to 9 U7 and/or S5 cores as well as a configurable Level 2 Cache
- U7 Core Architectural Features
 - RV64GCV capable core with Sv39 Virtual Memory Support
 - Dual Issue, in-order 8 stage Harvard Pipeline
 - Optional SECDED ECC support on Level 1 and Level 2 memories
- Performance and Area
 - 2.5 DMIPS/MHz
 - 5.1 Coremarks/MHz
 - SPEC2k6: U54 + 40%
- Functional Safety and Security and Real Time features
 - SECDED ECC on all L1 and L2 memories
 - Optional L1 and L2 Tightly Integrated Memories
 - Programmatically clear and/or disable dynamic branch prediction for deterministic execution and enhanced security
- Configurable EXX minion cores can provide a variety uses
 - System boot and monitor, Sensor Hub/Fusion, Security Co-Processor
- Broad market applications
 - General purpose embedded, industrial, IoT, high-performance real-time embedded, automotive

TileLink or AMBA

SiFive Mix and Match Combining Embedded and Application Cores

Delivered as a single, pre-integrated, verified deliverable from SiFive

SiFive Core Designer

● ● ● ◎ SiFive - 0 ← → C ● http:		/customize/4822849d-ef63-4776-ae	ab-9073853e41e5/			* 0 © 3 :
< Workspace		GoreDesigner	REVIEW			Contact Sales
01.	Design	02. Review			03. Bui	ild
	E2 Series Great CPU			Review		
Modes & ISA	Modes & ISA		Great CPU Co	ore Complex		
On-Chip Memory Ports Security	Privilege Modes Machine Mode User Mode		Machine Ma Multiply (Pij 2 Core Inter	E2 SERIES CORE RV32IMAC Machine Mode • User Mode Multiply (Pipelined) • Atomics • No FP 2 Core Interfaces 1 Perf Counter 4 Regions		Front Port 32-bit AHB System Port 0 32-bit AHB System Port 1 None
Debug Interrupts	Core Interfaces		TIM 0 16	KiB TIN	1 16 KiB	Peripheral Port 32-bit AHB
	Shared Instruction and Data	Separate Instruction and Data	JTAG Debu 4 HW Break	-	CLIC 4 Configu 127 Intern	uration Bits upts
	Multiply (M Extension) Multiply Performance	0				

- All SiFive Core IP is configured and delivered via the SiFive Core Designer Web Portal
 - Simple, Easy to Use, Web Interface
- **Variant** are generated with click of a button and available from the Workspace

Variants contain

- RTL matching the configuration, including a testbench, and other collateral needed to realize the design
- Documentation specific to the design
- Customized bare-metal BSP for easy integration into SiFive's SDKs
- FPGA bitstreams for common FPGA development boards for easy software benchmarking of the RC

SiFive Core Designer Demo

SiFive U8-Series

Incredibly Scalable Out-of-Order Application Processor Core IP

EU8-Series U7-Series

2017

2018

TODAY

Enabling Innovation For End Points, IoT Edge, and Cloud

End Points DTV / Smart Home AR, VR, MR Set Top Box Game Consoles Digital Imaging Enterprise 5G Wireless Core/Edge Routers Base Stations Access Points Edge/Autonomous AV / ADAS IVI / Cluster HUD / Telematics Military / Aerospace Robots / Drones

Scalable, Power-Efficient 64-Bit Microarchitecture for Embedded Intelligence

SiFiveU8-Series

Design Goals for SiFive U8-Series Core IP

1.5X

2X

Class Defining

Performance Per Watt¹

Area Efficiency¹

Scalability

SiFiveU8-Series

Delivering On The SiFive U8-Series Goals

SuperScalar Out-Of-Order 10-12 Stage Triple-Issue

Performance Per Watt Tiny Area Low Power Configurable Extensible

Area Efficiency Parameterized µArch Composable Cache Optional FPU 9-Core Mix+Match Cluster Scalability

SiFive

30

SiFive U8-Series: RISC-V High Performance CPU

SiFive U84

2.63mm²

Quad-Core CPU w/2MB L2\$

CU Core without L2\$

2.3X Higher IPC² **3.1X** Total Performance² **1.4X** Higher Frequency²

2.6GHz Frequency in 7nm

SiFive 31

U8-Series : Breakthrough Performance for RISC-V

SiFive U8-Series

Introducing U8-Class Processor Core IP

SiFive U84 A High-Performance Scalable 8-Series Core

SiFive U87

A High-Performance Scalable 8-Series Core with Vector Processing

Debug, Software, and Ecosystem

SiFive Debug

SiFive Debug IP

Access, Observe, Control

SiFive's Debug IP portfolio gives developers the power to efficiently debug SiFive based designs. From simple run control debug, to cross-triggering, to advanced multicore trace solutions, all delivered **pre-integrated** and **verified** together with SiFive's RISC-V Core IP in a single deliverable.

Basic Debug IP

Everything needed for run-control debug, and more. Included with every Core IP subscription.

Advanced Debug IP

Enabling Nexus trace, advanced debug control, and Coresight compatibility.

Debug Features - Available Now

• Standard Run Control – go, halt, single step by instruction

- When halted by probe or external trigger, core takes a debug interrupt and begins execution at 0x800
- Software breakpoint: EBREAK instruction also causes execution to go to debug interrupt
- s0 reg is copied to DSCRATCH reg; core then runs tight loop until GO or RESUME flags are set

Read/write registers and memory

Fast mode for reading/writing blocks of memory

• SBA – System Bus Access

- Optional, allows debugger to access memory directly without core intervention
- Useful for periodic sampling of pertinent variables
- Can be used to implement low overhead semi-hosting

• Multi-hart and heterogeneous core debug control

- For multi-core, select hart (hardware thread) first (1 of up to 1024)
- Hardware can be configured with up to 31 halt groups
- Each group supports synchronous start, stop of all harts defined in group when any one enters debug mode
- External trigger input/output pairs, go to periphery of core complex
 - Can configure 0 to 16 pairs
 - 2-wire request/acknowledge handshake (CoreSight CTI compatible), can cross clock boundaries
 - If trigger input asserted, will cause group of harts to enter debug mode
 - When hart group halts, external trigger out is asserted to a CTM (CoreSight cross-trig matrix) or customer logic

cJTAG Support: Available Now

- Optional 2-wire IEEE 1149.7 (cJTAG) interface
- Classic JTAG run control debug with only 2-Wires
 - Perfect for pin constrained designs

 Fully supported by IAR iJet, Lauterbach, Olimex, and SEGGER JLINK probes

cJTAG System Block Diagram

Instruction Trace Features

• Trace protocol based on Nexus standard

- IEEE-ISTO 5001 standard since 2003, expanded in 2012 for SERDES trace sink
- Established standard, protocol includes message types for extensions and customization
- Well supported by the tools ecosystem such as Lauterbach, Ashling, Green Hills

• Instruction trace messages

- Compresses trace by capturing only changes in program flow, using BTMs Branch Taken Messages
- Direct Branch: records number of half-words executed (I-CNT) since last branch, for branches where the destination is statically known
- Indirect Branch: for branches with destinations that are determined at runtime
- **Synchronization:** records full address for destination of an interrupt, or periodically as reference for other branches
- Ownership trace: Message generated when instrumented code writes to the memory-mapped ITC Instrumented Trace Component
 - Primarily used to record RTOS task ID when a context switch occurs

• **Timestamp** (optional)

- Choice of internal (fixed frequency) or external timestamp, synchronized to TLclock
- Width is parameterizable, typically 40 or 48 bits
- Each Nexus message can include timestamp, or turned off to save bandwidth

Extensions to Instruction Trace

Multiple message sources

- BTMs CPU instruction trace
- ITC Instrumented Trace Component (optional)
 - A set of memory-mapped Stimulus registers that, when written to, generate messages that includes register index + 32 bit data value
 - Writes are non-blocking
 - Supports byte, half-word, word writes
 - 32 mapped addresses; writes to upper half include a timestamp with the index and data written
- Watchpoints Core watchpoints
 - Actions: start trace, stop trace, insert Program Trace Sync message
 - Edge mode transition from no-match to match; start or stop trace
 - Range mode trace while watchpoint true, don't trace when false
 - Use: record markers in trace, w/ timestamp
 - Can be used for precise point-to-point timing of code
 - Watchpoints can also be variable address matches
- External Triggers
 - Up to 8 external triggers supported for controlling trace
 - Actions: start or stop trace, record Program Trace Sync messages
 - Provides inserting markers into trace based on external events

Trace Packer Merges

Messages from Multiple Sources and Compresses the Data

Configured in SiFive Core Designer

Pre-integrated and Verified alongside your Core IP using SiFive's cloud-based methodology

2 0.2 dg	e 🕜		
JTAG	cJTAG	APB	
Hardware Brea	kpoints 🔞		
	6 8 10 I I I		
External Trigge	ers		
_	6 8 10		
✓ System Bu	s Access 🕜		
erformance Coun	ters 🕜		
0 1 2	3 4 5	6 7	8

Multi-core Nex	us Trace Er	ncoder	(TE)	Optic	ons
TE for First	Hart Only	TE	s for	All Ha	rts
Send Trace To	0				
SRAM	ATB B	ridge		SW	Т
 Trace Enco 	oder Timest	amp (0 -		
Trace Time	estamp Wid	th (Bit	s) 🕜		
40	48			6	
Trees Time					
Trace Time	estamp Sou	irce 🐨	•		
Bus Clock	Cor		Ext	ernal	
Number of Ext	ernal Trigge	er Inpu	ts to '	TE 🕼	
0 1 2	_				
				_	+
Number of Ext	ernal Trigge	er Outr	outs f	rom T	ΈØ
0 1 2					
0	0				
On-chip Trace	Buffer Size	(Bytes	s) 🕜		
256 512 18					
					<u> </u>

SiFive Debug: CoreSight Compatibility

- APB DTM APB Debug Transport Module is alternative to JTAG connection to Debug Module (DM)
- Allows ARM DAP to control SiFive cores
- User can insert an AXI or AHB-to-APB bridge if needed
- APB Debug Port occupies 4K bytes of APB memory space.
 - DMI addresses are word granular so each register occupied 4 bytes in the APB space

Security

SoC Security Best Practices

Replace Legacy Solutions

Reduce Trusted Computing Base

Clear Root-of-Trust

MIN-MI

Auditable

Securing The RISC-V Revolution

Scalable Architecture

Greater Isolation

Finer Grain Controls System-Level Security

Multi-Core Privilege Modes Per Memory PMP Regions Per Core or Per PID Protection H/W Bus Master Coverage

Per Peripheral Access Control

Unified Open Hardware and Software Security

Pilve SiFive

SifiveShield

The SiFive Open Secure Platform Architecture

Open Specification

Designed For Scalability System Level Protection

Customizable

$\overline{\clubsuit}$

SiFive

46

Implementing An Open, Scalable and Secure Platform

Secure Lifecycle

Communications

Operating System

Validated Crypto Engines

Threat Prevention

RoT

SiFiveShield

SiFive Shield – Multi-Domain Security

A Fine-Grain Security Model for Isolated Code Execution & Data Protection

Multi-Domain Security Model with Fine Grain Control

SoC Level Information Control with Advanced Isolation Control Data Protection For Core, Cache, Interconnect, Peripheral and Memory

47

SiFive

SiFive WorldGuard

Core Driven Mode for Multi-Domain Security

SiFive WorldGuard

Process Driven Mode for Multi-Domain Security

ev SiFive

Feature	SiFive Shield	'Competitive' Solutions
Support for Multiple Worlds	Unlimited	Partial
Multi-Core Support	Yes	Partial
Software complexity	Low	Very High
Recompilation Requirement	None	Full
Full ISR in user mode	Yes (RISC-V)	No
Isolation per PID	Yes	No
DMA Protection	Yes	Yes
Memory & Peripheral Filter	Yes	Yes
In-house Crypto Engines	Yes	Yes
Key provisioning	SiFive Service (or 3 rd Party)	3rd Party
Open Source Secure Boot	Yes	Yes

Software and Ecosystem

RISC-V Open Source Tools Status

Software	Status	Recommended source release	Notes
GCC	Upstreamed as of 8.3	Upstream or SiFive: https://github.com/sifive/freedom-tools	SiFive maintains binary and source distributions which may contain patches which have not be upstream yet
LLVM	Upstreamed as of 9.0	https://github.com/llvm-mirror/llvm	Non-experimental support released as of version 9.0
GDB	Upstreamed as of 8.3	https://github.com/riscv/riscv-gnu-toolchain	
binutils	Upstreamed as of 2.32	Upstream	
newlib	Upstreamed as of 2.5.0	Upstream	
glibc	Upstreamed as of 2.27	Upstream	
Linux Kernel	Upstreamed as of 4.15 & 5.13	Upstream or SiFive: https://github.com/sifive/riscv-linux	
qemu	Upstreamed as of 4.2	Upstream	
OpenOCD	Not upstreamed	https://github.com/riscv/riscv-openocd	Upstreaming OpenOCD is planned, but low priority

 Ξ

Embedded

HiFivel Rev B: Embedded RISC-V Dev Board

- SiFive FE310-G002 (built in 180nm)
- Operating Voltage: 3.3 V and 1.8 V
- Input Voltage: 5 V USB or 7-12 VDC Jack
- IO Voltages: 3.3 V only
- Digital I/O Pins: 19
- PWM Pins: 9
- SPI Controllers/HW CS Pins: 1/3
- Hardware I2C: 1
- UART: 2
- External Interrupt Pins: 19
- External Wakeup Pins: 1
- Flash Memory: 4 MB Quad SPI
- Host Interface (microUSB): Program, Debug, and Serial Communication

Order on Crowdsupply

SiFive Embedded Software Ecosystem

• SiFive Freedom Studio

- Eclipse CDT, GNU MCU Eclipse, pre-built GCC, and OpenOCD
- Built on Open Source technology
- SEGGER JLINK Probe and Embedded Studio RISC-V IDE
- Lauterbach Lauterbach TRACE32 for silicon bring up and debug
- IAR IAR Embedded Workbench with SiFive support in development
- Ashling RiscFree C/C++ IDE for development and debug
- Embedded Operating Systems
 - FreeRTOS
 - Zephyr OS
 - RTEMS
 - Express Logic Thread X
 - Micrium μCOS
 - RIOT
 - NuttX
 - Imperas Simulation models and tools for early software development

eiar

SYSTEMS

Imperas

ASHLING

Zephyr

ΙΠΤ

SiFive

What is Freedom E SDK

- Embedded development kit providing a command line driven workflow with Examples, FreeRTOS, and Utilities
- Freedom Metal BSPs are available for all SiFive Deliverables
 - IP Deliverables
 - Standard Core IP Deliverables
 - Standard Core FPGA Deliverables
 - SiFive Development Boards
- Examples use Freedom Metal to provide portability
- Open source repository
 - <u>https://github.com/sifive/freedom-e-sdk</u>

What is Freedom Metal

- Library for writing Portable, Bare Metal SW for all SiFive devices
 - A Bare Metal C application environment
 - An API for controlling CPU features and peripherals
 - The ability to retarget to any SiFive RISC-V product
 - A RISC-V hardware abstraction layer (HAL)
- Uses BSP's to provide target adaptation
- Open source repository
 - <u>https://github.com/sifive/freedom-metal</u>

SiFive Q3 Toolchain Update

- SiFive releases a new toolchain distribution every quarter
 - Quarterly releases support
 - binaries <u>www.sifive.com/boards</u>
 - source https://github.com/sifive/freedom-tools

• Features of SiFive's Toolchain Distribution

- GCC (newlib/newlib-nano)/GDB/QEMU
- Support for all SiFive Core Designer generated cores
- Enhanced support for SiFive IP
 - Pipeline tuning options for SiFive cores (eg: -mtune=sifive-7-series
 - CLIC Vectoring Mode Support (eg: __attribute__((interrupt("SiFive-CLICpreemptible")));)

RISC-V olchain and Emulator	Save time by using one of our p necessary to compile and debu no problem as the QEMU emula applications without hardware. been carefully packaged to sup	ig progra ator pack Our toolo	ms on SiFive products. ages can be used to te chain and emulator dist	No hardware, st software
	GNU Embedded Toolchain — v2019.08.0		OpenOCD — v2019.08.2	
	Windows	0	Windows	0
	macOS	0	macOS	0
	CentOS	0	CentOS	0
	Ubuntu	0	Ubuntu	0
	QEMU — v2019.08.0 Windows	0	CentOS Ubuntu	0
	macOS	0		

Prebu GCC

Freedom Tools

- Sources and Build Scripts for all of SiFive's embedded toolchain's, debuggers, and Utilities
- RISC-V GNU Newlib Toolchain (GCC)
 - Binutils
 - GCC
 - GDB
 - Newlib and Newlib-nano
- RISC-V OpenOCD Debugger
 - OpenOCD and necessary drivers for FTDI devices
- **QEMU Open Source emulator**
 - targets for both RV32 and RV64

Sifive / freedom-to		⊙ Watch -	26 🖈 Unstar 10 😵 Fork
↔ Code ① Issues 2	2 17 Pull requests 1 II Projects 0 III Wiki	C Security	
Tools for SiFive's Free	dom Platform		
32 commit	s ŷ 5 branches	♥ 2 releases	1 contributor
Branch: master - New	pull request	Create new file Upload	files Find File Clone or download
	est #4 from sifive/gemu-integration		Latest commit 688fe4b 18 days ag
	Adding support for building QEMU on CentOS6		last mont
scripts	Updating OpenOCD to latest		28 days ag
.gitignore	Adding Makefile with parts from riscv-gnu-toolchair	1	5 months ag
juttore	Adding SiFive QEMU 3.1 submodule	,	2 months ag
Makefile	Setting QEMU and OpenOCD versions for 19.05 re	elease	28 days ag
README.md	Added QEMU info		20 days ag
III README.md			
	eedom RISC-V Tools for Embed		hat target our Freedom
RISC-V platform	ns. This repository contains the scripts we use to b		-
O Dackagaa a			
 Packages al RISC-V GN Binutils GCC GDB 	U Newlib Toolchain (riscv64-unknown-elf-*) S		

SiFive Freedom Studio

FreeRTOS - Delivered by SiFive

- RISC-V officially supported as of FreeRTOS 10.2 (Feb 2019)
 - 10.2.1 adds support for RV64
 - SiFive QEMU example included in the distribution
- SiFive have created a FreeRTOS port to Freedom Metal for support for SiFive devices
 - Generic support for all SiFive cores and tested against SiFive development platforms like the HiFive 1 Rev B
 - FreeRTOS examples added to Freedom E
 SDK and Freedom Studio

	eforge.net/p/freertos/code/H eloper 🖿 Financial 🖿						🖈 🕐 💽 🔾
ps 🖿 SiFive 🖿 Dev ome/Browse/FreeRTOS Real 1		tech 📕 Server 📕 Bool	ks and Movi 🍯 Expec	lia Travet:			Uther boo
Market	leading real time kernel fo			I (RTC	DS)		
Summary	Files	Reviews	Support	Tickets ▼	News	Discussion	Code
	Tree [r262					📥 Download Snaps	hot 🛗 History 🔊
	HTTPS	wn:// HTTPS acce	ss svn checkout https://sv	n.code.sf.net/p/fre	ertos/code/trunk freertos-code		
	File		Data	Author	Commit		
	File		Date	Author	Commit		
	Chip_spec	ific_extensions	Date 2018-12-31	Author &rtel	[r2621] Move the 'generic' ver		
	Chip_spec	ific_extensions 5 for RISC-V RV32.pdf					
	Chip_spec	-	2018-12-31	🛎 rtel	[r2621] Move the 'generic' ver	e() is brought in automatica	
	Chip_spec	5 for RISC-V RV32.pdf	2018-12-31 4 days ago	årtel årtel	[r2621] Move the 'generic' ver [r2626] Ensure eTaskGetState	t() is brought in automatica t() is brought in automatica	

• Zephyr RTOS

- Open Source
- Well defined development cycle
- Performant and scalable
- Strong software stacks
- SiFive Zephyr Support
 - HiFive1 Rev B board supported in the latest Zephyr LTS release

	[cv32	
Search or jump to	Dject-rtos / zephyr	© Watch - 27 Zer	ohyr™
Getting Started with Zeph × +		•	•
→ C A https://www.sifive.com/blog	g/getting-started-with-zephyr-rtos-v1.13.0-on-risc-v	x 0 e o 3	:
		×	<u> </u>
SiFive Produc	icts Why SIFIve?	Contact Sales Workspace D	
< The Blog		🎔 Tweet 🛅 Share 💽 Share 🔊	
	Nathaniel Graff – October 30, 2018		
	Getting Started with Z	Zephyr	
	RTOS v1.13.0 On RISC	-V	
	_		
	Hi everyone! I'm Nathaniel Graff, a software engineer here at Si excited to tell you about the most recent release of Zephyr RT Zephyr RTOS is a real-time operating system hosted by The Li featuring support for a myriad of different platforms, architectu including SiFive's E-series CoreIP, and the HiFive 1 developmen	DS, version 1.13.0! nux Foundation, res, and targets	
	I'm particularly excited about this release because it incorporal making the RISC-V port of Zephyr compatible with DeviceTree SiFive platforms. DeviceTree is the standard markup language	descriptions of	*

https://www.sifive.com/blog/getting-started-with-zephyr-rtos-v1.13.0-on-risc-v

Lauterbach

- Commercial RISC-V Debug Hardware and Software
 - Available in the market for over a year
- Support for all SiFive IP and platforms
 - RV32/RV64
 - Multicore
 - Heterogeneous Multicore

SiFive

- **Commercial RISC-V Debug** Hardware and Software
 - Available since late 2017
- Support for all SiFive IP and \bullet platforms
- **SEGGER RTT fully supported**
 - High Speed communication with host debugger

SEGGER Platform for RISC-V

IAR

- Very well known in the Embedded Space
 - Have been around for a long time 20+ years
 - Support many different architectures
- Known for embedded toolchain
 - The first proprietary RISC-V
 Compiler
 - High-Quality compiler generating both good code Density and Performance

Linux

HiFive Unleashed: World's First Multi-Core RISC-V Linux Dev Board

- SiFive FU540-C000 (built in 28nm)
- 8 GB 64-bit DDR4 with ECC
- Gigabit Ethernet Port
- 32 MB Quad SPI Flash
- MicroSD card for removable storage
- MicroUSB for debug and serial communication
- Digital GPIO pins
- FMC connector for future expansion with add-in cards

Order now at crowdsupply.com for \$999

SiFive Linux Platform Enablement - uboot and YOCTO

- SiFive engineers working on uboot and Yocto support for SiFive devices
- Uboot supporting existing HiFive Unleashed development boards available
- Yocto/Open Embedded BSP now abailable
 - See Freedom-U-SDK https://github.com/sifive/freedom-u-sdk

Linux Distributions - Early Support

Debian Distro Package Build Status

100 8 alpha 06 06 hppa ia64 × m68k powerpcspe 80 8 ppc64 ≊ riscv64 * sh4 02 70 sparc64 x32 ¢ ¢ 8 8 percentage of packages 50 20 40 40 30 33 Ŕ 20 20 10 9 0 0 2018.10 2018.12 2018.14 2018.16 2018.18 2018.20 2018.22 2018.24 2018.26 2018.28 2018.30 2018.32 2018.34

date

What percent is built for each architecture (past quarter)

RISC-V Debian Port Goals

- Software-wise, this port will target the Linux kernel
- Hardware-wise, the port will target the 64bit variant, little-endian

80% of all Debian packages are ported as of today

Debian Distro runs on the HiFive Unleashed development board with the SiFive Freedom U540 SoC