&) siFive

RISC-V Architecture Overview

&£ RISC-V Origin Story (pronounced: risk five) : 4 RISC

e Started as a “3-month project” in 2010 at UC Berkeley
— Required a simple ISA which could be extended
— Commercial ISAs were too complex and presented IP
legal issues

What is RISC-V?

A high-quality, license-free, royalty-free RISC ISA
e Standard maintained by the non-profit RISC-V Foundation
e Suitable for all types of computing systems
— From Microcontrollers to Supercomputers
* RISC-V is available freely under a permissive license
* RISC-Vis not... .
— A Company Andrew
— A CPU implementation ——

Yunsup Lee Krste Asanovic

Inventors of RISC-
V

SiFive

£ RISC-V Foundation -riscv.org : 4 RISC

 RISC-V Foundation is a non-profit

orgamzatlon.formEd In August </ Foundation Mission Statement
2015 to publicly govern the ISA PR
. . The RISC-V Foundation is a non-profit consortium
¢ Foundation Functions chartered to standardize, protect, and promote the free
— Directs future development of ISA and open RISC-V instruction set architecture together
— Compliance tests with its hardware and software ecosystem for use in all
— Promotion of the ISA computing devices.
e >3350 members representing d B

wide range of markets

SiFive

Alibaba roup mnmmo‘m

SAMSUNG PR
)Blockstream ‘ OCJOSIp

QLIALCOM GO g|e @g NVIDIA. E='=‘—=’= rambus Aummse | :
[BAE SYSTEMS :
Mellanox @EE'QQATE e cwc'osam \"b Mcrﬂn éﬂc@fgesv ‘\\
HIJAWEI o m”\JRES
—— CEVA
= @NNUS uLtra@ T,

ORION
EMC wurersacnfh 5
HITACHI

} r
. RINCETON o
™ XtremeEDA
ERPE=S DATA
6] Micwanare %
Inspire the Mext

I;TNI‘L'EREITY
-~ 7775 Western MOSIS
O SKY -Dlslf' (v SANECHIPS aselsan
. BITMAIN & 5ms DI LPHIN ’GOTIN = CSem
56 SECURE}RF

Ii:: inside . # ‘
|. secure
/ @ SiFive mzE [S8

. BEBIRE
Free, open, extensible ISA for all computing devices

\s f,

WW GLORYSPACECN

o NUCLE ;
. RISC open,
&_Quickl_oqic SI(hynix @ @SI'ICOI‘I SIEMENS

RISC-V foundation now > 350 members.
DRAPER [N i SILEX ‘“FORTH.
me SEEES \NSIGHT @ TRlHﬁHlC SRSl ien ol Gome - -
wintrinsico cadence [NeTRONeME p N\ nsirexe (
Hewlett Packard g a l 01s . Egééglseét‘ure

S®undAl
. ™ &
"‘H"m' imperas imt. <
eEMDALO
TECHNOLOGIES :
, Enterprise
HEX ‘
{: LInudBEﬂR

QQYSI%E HORTONWORKS
ﬁ 5
e DBVER gycorr ® @Ecosw
i O =y Wi AN @
% siuicon Lass COMC mwgmm ' . Cantipad
.‘(,) Entl EE
O C(Roa Logic .::" s Suntacore’ @
THEAES

Ryl VectorBlox [-L// 1c)
miTesare oculus
¢ Rumble

@ I ‘ [llllllla O ‘) m Ju tor
.x ment
[5 n 4: : o Development

Technolution
“ﬁ i
e INTRINSIX #ELATTICE
'RESEAREH v @DIDT 2Zasiuine expressiogic WRISC o | ot con
oaE pluespec COrtus &creene GYESEEIESSE ETH zirich

,@antmlcro G surecore PerfXLab yo TeoH Ip

SiFive

(63

Status of the RISC-V Specifications

User Mode - version 2.2 Ratified

— Frozen in 2014 at version 2.0
— Updates since 2.0:
e (SR and FENCE.I instructions moved out
of base extension “I”
e Memory model clarifications

Privilege Mode - version 1.11

Ratified
— Version 1.11 ratified May 2019

Debug Spec - version 0.13 Ratified

Specifications in Progress
— Hypervisor Extension - version 0.3 Draft
— Vector Extension - version 0.7 Draft
— And many more

Participate - https://riscv.org
— Join the mailing list
— Become a member

b RISC

The RISC-V Instruction Set Manual
Volume I Unpriviloged ISA
nent Verdon 20190505 Base- Rut icatbon

Dot

Editors: Andrew Waterman', Koste Asanovié'?
ISiFive T

CS Divion, EECS Departinent, Univepsaty of Califorma, Berkoley

andrev@sifive.con, krsteSbaerkelay.adu
May 4, 2019

https://riscv.org

RISC-V Basics

@ RISC-V Instruction Set Architectures

* RISC-V uses a standard naming convention to
describe the ISAs supported in a given

implementation Hel IO

 ISA Name format: RV[##it][abc.....xyz]
— RV —=Indicates a RISC-V architecture
— [###] - {32, 64, 128} indicate the width of the RVéQéc
integer register file and the size of the user
address space

— [abc...xyz] — Used to indicate the set of
extensions supported by an implementation.

SiFive

~J

@ The Standard Extensions

. Extensions define instructions

“I” for Integer is the only required extension in a RISC-V

implementation and defines 40 instructions | [
 The RISC-V Specification defines a number of “Standard
Extensions”
— Standard Extensions are defined by the RISC-V Foundation
and are optional
e RISC-V allows for custom, “Non-Standard”, extensions
in an implementation
Putting it all together (examples)
— RV32l - The most basic RISC-V implementation
— RV32IMAC - Integer + Multiply + Atomic + Compressed
— RV64GC - 64bit IMAFDC
— RV64GCXext — IMAFDC + a non-standard extension Xext Non-standard extension “ext”

Common RISC-V Standard Extensions
*Not a complete list

Integer Multiplication and Division

Atomics

Single-Precision Floating Point

Double-Precision Floating Point

General Purpose = IMAFD

olojlo|lm|[>|Z

16-bit Compressed Instructions

Non-Standard User-Level Extensions

SiFive

(0]

SiFive

Register File

RV32l1/64l have 32 Integer Registers
— Optional 32 FP registers with the F
and D extensions
— RV32E reduces the register file to 16
integer registers for area constrained
embedded devices
Width of Registers is determined by ISA
RISC-V Application Binary Interface (ABI)
defines standard functions for registers
— Allows for software interoperability
Development tools usually use ABl names
for simplicity

Register ABI Name Description Saver
x0 zero Hard-wired zero -
x1 ra Return address Caller
X2 sp Stack pointer Callee
x3 gp Global pointer -
x4 tp Thread pointer -

x5-7 t0-2 Temporaries Caller

X8 sO/fp Saved register/Frame pointer Callee

x9 sl Saved register Callee

x10-11 a0-1 Function Arguments/return Caller
values

x12-17 a2-7 Function arguments Caller

x18-27 s2-11 Saved registers Callee

x28-31 t3-6 Temporaries Caller

@ RISC-V Modes

RISC-V Modes

Level Name Abbr.
* RISC-V Privileged Specification defines 3 levels of 0 User/Application U
privilege, called Modes 1 S - S
. . . o 2 Hypervisor HS
. (I;/:‘a:;lllenqeurir:::(;:;;I;e highest privileged mode and the 3 Machine M

— Flexibility allows for a range of targeted

implementations from simple MCUs to high- Supported Combinations of Modes
performance Application Processors

Supported Levels Modes
1 M
* Machine, Hypervisor, Supervisor modes each have Control
. 2 M, U
and Status Registers (CSRs)
J — More on these later 3 M, 5, U
= 4 M, Hs, S, U

RISC-V Instructions

£ RISC-V Reference Card

£ Compressed Instructions (C Extension)

Most base integer instructions “Compress” .
@

to 16-bit equivalents

— 1:1 mapping of compressed instructions to standard
instructions

e Smaller code size can reduce cost in

embedded systems
— Directly resulting in smaller Flash/ROM/RAM

 Smaller code size can increase performance

and reduce power

— Better utilization of Cache RAMs
— Fewer transactions across high power interfaces (DRAM,
Flash, etc...)

e RV64 can also use the C Extension A Microcontroller

I’m mostly
embedded flash

SiFive

£ Atomics (A Extension)

e Atomic memory operations (AMO) perform
Read-Modify-Write operations in a single

Atomic instruction

— Logical, Arithmetic, Swap
— Acquire (aq) and Release (rl) bits for

release consistency

* Load-Reserved/Store-Conditional pairs
— Guaranteed forward progress for short

sequences

SiFive

11 t0, 1 # Initialize swap value.
again:

amoswap.w.aq t0, t0, (al0) # Attempt to acquire
lock.

bnez t0, again # Retry if held.

...

Critical section.

...

amoswap.w.rl x0, x0, (a0) # Release lock by
storing 0.

Example RISC-V Spinlock

@ Fence Instructions

* Fences are used to enforce program order Predecessor Load/Store
on device I/0 and memory accesses W\
* FENCE instruction format oo __| Fence k=== == ==
— FENCE predecessor, successor
— Predecessor/successor can be \W
 RW,O
— FENCE RWIO, RWIO — full barrier Juccessor Load/store

SiFive

@ CSR and ECALL Instructions

e Control and Status Registers (CSRs) have their own dedicated
instructions :
— Read/Write
— Read and Set bit
— Read and Clear bit

* Environment Call instruction used to transfer control to the
execution environment and a higher privileged mode
— Triggers a synchronous Interrupt (discussed later)

— Example: User mode program can use an ECALL to transfer control to
a Machine mode OS kernel, aka System Call

SiFive

RISC-V Control and Status Registers (CSR)

@ What are Control and Status Registers (CSRs)

* CSRs are Registers which contain the working
state of a RISC-V machine

* CSRs are specific to a Mode
— Machine Mode has ~17 CSRs (not including performance
monitor CSRs)
— Supervisor Mode has a similar number, though most are
subsets of their equivalent Machine Mode CSRs
 Machine Mode can also access Supervisor CSRs

* CSRs are defined in the RISC-V privileged

specification
— We will cover a few key CSRs here

SiFive

@ Identification CSRs

 misa - Machine ISA Register
— Reports the ISA supported by the hart (i.e.
RV32IMAC)

* mhartid — Machine hart ID
— Integer ID of the Hardware Thread

e mvendorid — Machine Vendor ID
— JEDEC Vendor ID

* marchid — Machine Architecture ID
— Used along with mvendorid to identify a
implementation. No format specified

* mimpid - Machine Implementation ID
— Implementation defined format

SiFive

@ Machine Status (mstatus) - The Most Important CSR

SiFive

Control and track the hart’s current operating state

Bits Field Name Description Bits Field Name Description
0 UIE User Interrupt Enable [14:13] FS Floating Point State
1 SIE Supervisor Interrupt Enable [16:15] XS User Mode Extension State
2 Reserved 17 MPRIV Modify Privilege (access memory as MPP)
3 MIE Machine Interrupt Enable 18 SUM Permit Supervisor User Memory Access
4 UPIE User Previous Interrupt Enable 19 MXR Make Executable Readable
5 SPIE Supervisor Previous Interrupt Enable 20 TVM Trap Virtual memory
6 Reserved 21 TW Timeout Wait (traps S-Mode wfi)
7 MPIE Machine Previous Interrupt Enabler 22 TSR Trap SRET
8 SPP Supervisor Previous Privilege [23:30] Reserved
[10:9] Reserved [31] SD State Dirty (FS and XS summary bit)
[12:11] MPP Machine Previous Privilege

RV32 mstatus CSR

@ Timer CSRs

* mtime * mtimecmp
— RISC-V defines a requirement — RISC-V defines a memory ﬁ
for a counter exposed as a mapped timer compare
memory mapped register register
— There is no frequency — Triggers an interrupt when
requirement on the timer, but mtime is greater than or
° It must run at a constant .
frequency equal to mtimecmp
* The platform must expose
frequency

Field Name Description Field Name Description

[63:0] mtime Machine Time Register [63:0] mtimecmp Machine Time Compare Register

mtime CSR mtimecmp CSR

L Supervisor CSRs

e Most of the Machine mode CSRs have

Supervisor mode equivalents
— Supervisor mode CSRs can be used to control the

Bits Field Name Description
state of Supervisor and User Modes. [21:0] PPN Physical Page Number of the root page table
— Most equivalent Supervisor CSRs have the same (30:22] ASID Address Space Identifier
mapplng as MaChine mOde WIthOUt MaChine 31 MODE MODE=1 uses Sv32 Address Translation
mode control bits RV32 satp SR
— sstatus, stveg, sip, sie, sepc, scause, satp, and
more Bits Field Name Description
° Satp - Super‘"sor Address TranSIatlon and [43:0] PPN Physical Page Number of the root page table
PrOteCtion RegiSter [59:44] ASID Address Space Identifier
— Used to control Supervisor mode address [63:60] MODE Encodings for Sva2) Sv3g) Svas
translation and protection RV64 satp CSR

SiFive

L Virtual Memory

SiFive

OXFFFF_FFFF

RISC-V has support for Virtual Memory
allowing for sophisticated memory
management and OS support (Linux)

Requires an S-Mode implementation

Sv32
— 32bit Virtual Address
— 4KiB, 4MiB page tables (2 Levels)
Sv39 (requires an RV64 implementation)
— 39bit Virtual Address
— 4KiB, 2MiB, 1GiB page tables (3 Levels)
Sv48 (requires an RV64 implementation)
— 48bit Virtual Address

— 4KiB, 2MiB, 1 GiB, 512GB page tables (4 .
Levels) Virtual
Page Tables also contain access permission .00 0000 [IAG[sIE=00

attributes Virtual Address Map

OXFFFF_FFFF

0x0000_0000

Physical Address Map

=

SiFive

Physical Memory Protection (PMP)

* Can be used to enforce access
restrictions on less privileged modes
— Prevent Supervisor and User
Mode software from accessing
unwanted memory

* Up to 16 regions with a minimum
region size of 4 bytes

* Ability to Lock a region
— Alocked region enforces
permissions on all accesses,
including M-Mode
— Only way to unlock a region is a
Reset

OXFFFF_FFFF

4 Byte Region Locked.
Only accessible after a
reset

User Mode has full
RWX Privileges

User Mode has Read
only Privileges

User Mode has
Execute only
Privileges

0x0000_0000

User Mode
Context

User Mode Data

Shared Library
Code

Example PMP Memory Map

Can define
entire address
map as not
accessible

to U-Mode in 1
register

RISC-V Interrupts

£ RISC-V Interrupts

. RISC-V defines the following interrupts per Hart
— Software — architecturally defined software interrupt
— Timer — architecturally defined timer interrupt
— External — Peripheral Interrupts
— Local - Hart specific Peripheral Interrupts

- Machine Software Interrupt

* Optionally per privilege level Machine Timer Interrupt
— Can have Supervisor Software/Timer/Machine Machine External Interrupt
Interrupts . . RQ ha rt o
— Can have User Software/Timer/Machine Signals Local Interrupt 0

* Local interrupts are optional and implementation
specific Local Interrupt X

— Can be used for hart-specific peripheral interrupts

— Useful for latency-sensitive embedded systems or
small embedded systems with a small number of
interrupts

SiFive

£ Machine Status (mstatus) - As it relates to Interrupts

Bits Field Name

Description

Bits Field Name Description

[14:13] FS Floating Point State

[16:15] XS User Mode Extension State
17 MPRIV Modify Privilege (access memory as MPP)
18 SUM Permit Supervisor User Memory Access
19 MXR Make Executable Readable
20 TVM Trap Virtual memory
21 T™W Timeout Wait (traps S-Mode wfi)
22 TSR Trap SRET

[23:30] Reserved

[31] SD

State Dirty (FS and XS summary bit)

0 UIE User Interrupt Enable
1 SIE Supervisor Interrupt Enable
2 Reserved
3 MIE Machine Interrupt Enable
4 UPIE User Previous Interrupt Enable
5 SPIE Supervisor Previous Interrupt Enable
6 Reserved
7 MPIE Machine Previous Interrupt Enabler
8 SPP Supervisor Previous Privilege
[10:9] Reserved
[12:11] MPP Machine Previous Privilege

RV32 mstatus CSR
M/S/U IE - Global Interrupt Enables for Modes which supports interrupts

M/S/U PIE — Encodes the state of interrupt enables prior to an interrupt.
— These bits can also be written to in order to enable interrupts when returning to lower privilege modes

M/S PP — Encodes the privilege level prior to the previous interrupt
— These bits can also be written to in order to enter a lower privilege mode when executing MRET or SRET instructions

@ Machine Interrupt Cause CSR (mcause)

Interrupt = 0 (exception)

* Interrupts are identified by reading the Exception Description
mcause CSR Code
. . . . 0 Instruction Address Misaligned
* Theinterrupt field determines if a trap Interrupt = 1 (interrupt) ;
. 1 Instruction Access Fault
was caused by an interrupt or an Exception Description X llegal Instruction
. Code
exception :
0 User Software Interrupt = Birslgpiin
1 Supervisor Software Interrupt 4 Load Address Misaligned
5 Reserved 5 Load Access Fault
- —r— —— 3 Machine Software Interrupt 6 Store/AMO Address Misaligned
—_— . 4 User Timer Interrupt 7 Store/AMO Access Fault
XLEN-1 Interrupt Identifies if an interrupt was 3 Envi ¢ Call f U-mod
synchronous or asynchronous 5 Supervisor Timer Interrupt nvironment Lail irom U-mode
[XLEN-2:0] Exception Code Identifies the exception 6 Reserved ¢ Eneflo imels Call e Srimee =
mcause CSR 7 Machine Timer Interrupt 10 Reserved
8 User External Interrupt 11 Environment Call from M-
mode
9 Supervisor External Interrupt
12 Instruction Page Fault
QU 10 Reserved
= 13 Load Page Fault
i 11 Machine External Interrupt
— 14 Reserved
' 12 -15 Reserved
15 Store/AMO Page Fault
>16 Local Interrupt X
30 >16 Reserved

£ Machine Interrupt-Enable and Pending CSRs (mie, mip)

* mie used to enable/disable a given

interrupt Bits Field Name Description
0 USIE User Software Interrupt Enable
® mlp |ndlcates Wthh |nterrupts dare 1 SSIE Supervisor Software Interrupt Enable
currently pending 2 Reserved
b df i 3 MSIE Machine Software Interrupt Enable
- Can e use or pO mg 4 UTIE User Timer Interrupt Enable
 Lesser-privilege bits in mip are writeable 5 STIE Supervisor Timer Interrupt Enable
. . 6 Reserved
— i.e. Machine-mode software can be used to —
. . b tt' th 7 MTIE Machine Timer Interrupt Enable
gener?te a superwsor Interrupt y >€ Ing € 8 UEIE User External Interrupt Enable
STIP blt 9 SEIE Supervisor External Interrupt Enable
* mip has the same mapping as mie Ly e
11 MEIE Machine External Interrupt Enable
12-15 Reserved
% >16 LIE Local Interrupt Enable
.E mie CSR

£ Machine Trap Vector CSR (mtvec)

mtvec sets the Base interrupt vector and the interrupt Mode

Bits Field Name Description mtvec Modes

[XLEN-1:6] Base Machine Trap Vector Base Address. Value Name Description
64-byte Alignment

0x0 Direct All Exceptions set PC to mtvec.BASE
[1:0] Mode MODE Sets the interrupt processing Requires 4-Byte alignment
mode.
0x1 Vectored Asynchronous interrupts set pc to
mtvec CSR mtvec.BASE + (4xmcause.EXCCODE)

Requires 4-Byte alighnment

* mtvec.Mode = Direct
— All Interrupts trap to the address mtvec.Base
— Software must read the mcause CSR and react accordingly

* mtvec.Vectored
— Interrupts trap to the address mtvec.Base + (4*mcause.ExCode)
— Eliminates the need to read mcause for asynchronous exceptions

> 0x01 Reserved

SiFive

£ Trap Handler - Entry and Exit

mtevc.MODE = Direct

e On entry, the RISC-V hart will

_ Save the current state Typical trap handler software will

PC MEPC Push Registers

Priv |:> mstatus.MPP

MIE mstatus.MPIE interrupt = mcause.msb
if interrupt

branch isr handler[mcause.code]
else
— Thenset PC= mtvec, mstatus.MIE =0 branch exception handler[mcause.code]

Pop Registers
MRET

. MRET instruction restores state

Interrupt handler pseudo code

PC MEPC
@ Priv < | mstatus.MPP
E—::Z MIE mstatus.MPIE
LT}

=

SiFive

Interrupt Handler Code

RISC-V Assembly interrupt handler
to Push and Pop register file

.align 2
.global trap entry
trap entry:
addi sp, sp, -16*REGBYTES

//store ABI Caller Registers
STORE x1, 0*REGBYTES (sp)
STORE x5, 2*REGBYTES (sp)

STORE x30, 14*REGBYTES (sp)
STORE x31, 15*REGBYTES (sp)

//call C Code Handler
call handle trap

//restore ABI Caller
LOAD x1, 0*REGBYTEZ(sp)
LOAD x5, 2*REGBYTES (sp)

LOAD x30, 14*REGBYTES (sp)
LOAD x31, 15*REGBYTES (sp)

addi sp, sp, 16*REGBYTES
mret

C Code Handler determines interrupt cause and branches to the appropriate

function

void handle trap()
{
unsigned long mcause = read csr(mcause);
if (mcause & MCAUSE INT) {
//mask interrupt bit and branch to handler
isr handler[mcause & MCAUSE CAUSE] ();
} else {
//branch to handler
exception handler[mcause] () ;

N //write trap entry address to mtvec
write csr(mtvec, ((unsigned long)é&trap entry));

=

SiFive

Compiler Interrupt Attribute

Pushing and Popping Registers in Assembly
is a pain

The interrupt attribute was added to GCC
to facilitate interrupt handlers written
entirely in C

Interrupt functions only saves/restores
necessary registers onto the stack

Align function on an 8-byte boundary

Calles MRET after popping register file back
off the stack

Interrupt handler with interrupt attribute.
No assembly Code necessary

void handle trap(void) attribute((interrupt)):;
void handle trap()
{

unsigned long mcause = read csr(mcause);

if (mcause & MCAUSE INT) {
//mask interrupt bit and branch to handler
isr handler[mcause & MCAUSE CAUSE] ();

} else {
//synchronous exception, branch to handler
exception handler[mcause & MCAUSE CAUSE] () ;

//write handle trap address to mtvec
write csr(mtvec, ((unsigned long)&handle trap)):;

£ Core Local Interruptor (CLINT)

SiFive

Core Local Interruptor is a memory mapped peripheral used to
generate Software and Timer Interrupts

Machine Software Interrupt Pending Register
— When written to, will pend a hart specific software interrupt

Machine Timer and Timer Compare Registers
— mtime CSR is a 64 bit clock which continually increments

— mtimecmp will generate a hart specific interrupt when mtime =
mtimecmp

Multi-Core scalable and consistent register map across SiFive RISC-V
Core IP

— Provides registers to generate software and timer interrupts for all harts
in a system

CONFIDENTIAL — COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED.

——Global intesrupte—st | 10

SiFive Core Complex Boundry

e

Mactiow Software lnerupt—e

—Machira Timw (nbef e ——e

Machine External Intermupt—e

Lol Interrupt G—et

Local Infeerupt 15—

msip
for hart 0 0x0200_0000
mtimecmp
for hart 0 0x0200_4000
mtime 0x0200_BFF8

E-Series CLINT
Memory Map

£ RISC-V Global Interrupts

e RISC-V defines Global Interrupts as a
Interrupt which can be routed to any
hart in a system

Global Interrupt 0 To hart 0

* Global Interrupts are prioritized and To hart 1

Global Interrupt 1

distributed by the Platform Level

Interrupt Controller (PLIC) To hart X

Global Interrupt XX

 The PLIC is connected to the External
Interrupt signal for 1 or more harts in
an implementation

SiFive

=

SiFive

Platform Level Interrupt Controller (PLIC)

The PLIC handles the majority of the Core Complex’s Interrupts
— The PLIC has a programmable number prioritization levels
- Only the highest priority pending interrupt is presented on the claim/complete register

Multi-Core interrupt distribution

— The PLIC is globally addressable and is connected to the Machine External Interrupt signal of
all cores in the Core Complex

Priority Registers
- 4B registers containing 3-bit interrupt priority
— 1 is lowest priority, 7 is the highest, 0 disables

Pending and Enable Registers
- Bit packed Pending and Enable registers

Threshold Register
- Only interrupts with Priority > Threshold will trigger an interrupt

Claim/Complete

- Returns the ID of the highest pending interrupt
- Interrupt completion is signaled to the PLIC by software writing the ID back to this register

CONFIDENTIAL — COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED.

) 'mee
[fmGlotisl Imwuuls——'ﬁ .‘h \ f’j hine External [nterrupt—et

Lol InterTupt 0—ef

SiFive Core Complex Boundry

E—— Mactira Time (nberrugt ——et

"‘5’7 T Local Infeeupt 15—

Urnerrupt—ef

Priority Regs

Pending Regs

Interrupt Enbables

Threshold

Claim/Complete

E-Series PLIC Memory
Map

0x0C00_0000

0x0C00_1000

0x0C00_2000

0x0C20_0000
0x0C20_0004

£ PLIC Interrupt Code Example

. In this example an interrupt is presented to the PLIC
. The PLIC signals an interrupt to a hart using the Machine External Interrupt (interrupt 11)
. The interrupt handler (handle_trap) branches to the defined function to handle the Machine External Interrupt
— CCode placed the address of machine_external_interrupt function in location 11 of the async_handler vector table
. The machine_external_interrupt handler does the following:
— Reads the PLIC's claim/complete register to determine highest priority pending interrupt
— Uses another vector table to branch to the interrupt’s specific handler
— Completes the interrupt by writing the interrupt number back to the PLIC's claim/complete

void handle trap(void) attribute ((interrupt)); void machine external interrupt ()
void handle trap() L { o B
{
unsigned long mcause = read csr (mcause); ,/’///// //get the highest priority pending PLIC interrupt

uint32 t int num = plic.claim comlete;

if (mcause & MCAUSE INT) ({
//branch to handler

//mask interrupt bit and branch to handler

isr handler[mcause & MCAUSE CAUSE] (); plic handler[int num] () ;

} else { //complete interrupt by writing interrupt number
//synchronous exception, branch to handler back to PLIC
exception handler[mcause & MCAUSE CAUSE] () plic.claim_complete — int_num;

//install PLIC handler at MEIP Location

isr handler[11l] = machine external interrupt;
//write trap entry address to mtvec

write csr(mtvec, ((unsigned long)&handle trap));

SiFive

@ RISC-V Interrupt System Architecture (M-mode only example)

Machine Software Interrupt

Machine Timer Interrupt——

Machine External Interrupt

hart 0

— Local Interrupt 0———

Local Interrupt X

——Global Interrupt 0

——Global Interrupt 1

——Global Interrupt XX

Machine Software Interrupt——

Machine Timer Interrupt

Machine External Interrupt

hart 1

Local Interrupt O

Local Interrupt X

SiFive

RISC-V Vector Extension

SiFive

Vector Extension Origin - Hwacha

* RISC-V (2010) originally designed to {
explore new accelerators based on top
of vector engine (ESP)

 Hwacha was primary research vehicle to
develop vector ISA and
microarchitecture ideas (2012)
— Hwacha taped out multiple times at
UCB (v4.5 on EagleX)
— Hwacha was an explicitly decoupled
vector-fetch accelerator with own
vector instruction stream -

Speedup relative 1o baseline Hwacha
~

dfilter-unroll

RISC-V “V” extension has more traditional
single instruction stream, a la original Cray

@Hwacha ®HwachatHOV @ Hwachathandopt @ Hwacha+HOV+handopt ®Mali2 mMalid

vectors Figure 6: Preliminary performance results. (Higher is better.) Due to scale, bars for certain benchmarks have been truncated. sdgemm-unroll-opt has
speedups 14.0x on the baseline and 13.8x on HOV. hsgemm-unroll-opt has speedups 12.0x on the baseline and 19.0x on HOV.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-264.pdf

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-264.pdf

£ RISC-V Vector Extension History

* First proposal (v0.1) presented June 2015 e s -
Workshop Ll macy ! riscw-vspec | OIIon- M ese W Y ®
Many iterations until recent v0.7 stable draft e o~
. bt O
in Jan 2019 B e s e

.......

— v0.7 now being targeted by community
with implementation work and software
development

— Stable spec version v0.7.1, matching
software release!

e By far the largest RISC-V extension (larger i
than sum of everything previously ratified)

“riscv-v-spec

https://github.com/riscv/riscv-v-spec

SiFive

https://github.com/riscv/riscv-v-spec

@ RISC-V Foundation Vector Extension Overview

v31[0] v31[1]
32 vector
reqisters
il | vi[d]
vO[O] vO[1]

V31[VLMAX-1]

v1[VLMAX-1]

VO[VLMAX-1]

Maximum vector length (VLMAX) depends on implementation,
number of vector registers used, and type of each element.

instructions

SiFive

 Unit-stride, strided, scatter-gather, structure load/store

* Rich set of integer, fixed-point, and floating-point instructions

* Vector-vector, vector-scalar, and vector-immediate instructions

* Multiple vector registers can be combined to form longer vectors
to reduce instruction bandwidth or support mixed-precision
operations (e.g., 16b*16b->32b multiply-accumulate)

* Designed for extension with custom datatypes and widths

VVector

(CSRs
viype

Vtype sets width of element in each
vector register (e.qg., 16-bit, 32-bit, ...)

vl

Vector length CSR sets number of
elements active in each instruction

vstart

Resumption element after trap

fcsr (vxrm/vxsat)

Fixed-point rounding mode and
saturation flag fields in FP CSR

@ Vector Unit Implementation-Dependent Parameters

. ELEN: Size of largest element in bits

. VLEN: Number of bits in each vector register
— VLEN >=ELEN

. Datapath Width

Vector ISA designed to allow same binary code to work across variations in VLEN and datapath width

Name Issue Issue VLEN Datapath (bits) VLEN/Datapath (beats)
Policy Width (bits)

Smallest InO 1 32 32 1
Simple InO 1 512 128 4
INO-Spatial InO 2 128 128 1
0O00-Spatial 000 2-3 128 128 1
O00-Temporal 00O 2-3 512 128 4
Oo00O-Server 0]e]0) 3-6 2048 512 4

SiFive

O00-HPC 000 3-6 16384 2048 8

SiFive

Example - 32-bit Vector Add

{ for (size_t i=9;

a@ = n, al = x, a2

#
#
#
#
#
Non-vector instruct

vvaddint32:

vector-vector add routine of 32-bit integers
void vvaddint32(size_t n, const int*x, const int*y, int*z)

i<n; i++) { z[il]=x[i]+y[i]; } }

=y, a3 = z
ions are indented

vsetvli tO, a@, e32 # Set vector length based on 32-bit vectors

viw.v vO, (al)

sub a@, a0, to

slli t@, tO, 2

add a1, a1, to
viw.v v1, (a2)

add a2, a2, to
vadd.vv v2, vO, vT
vsw.v v2, (a3)

add a3, a3, to

bnez aB, vvaddint32

ret

Get first vector
Decrement number done
Multiply number done by 4 bytes
Bump pointer
Get second vector
Bump pointer

Sum vectors

Store result

Bump pointer

Loop back

Finished

H H HHHH

£ Example - SAXPY

void

saxpy(size_t n, const float a, const float *x, float =*y)

{ size_t i; for (i=0; i<n; i++) { y[i] = a * x[i] + y[i];}}
#

register arguments:

ao n

fao a

al X

a2 y

saxpy:

Set vector length based on 32-bit vectors, V1lmul x8
Get first vector x[i]

Decrement count

Multiply length by 4 vector elements

Increment pointer

Get second vector y[i]

Fused Multiply Accumulate v8 = (fa@ * v@) + v8
Store result

Increment pointer

Loop Back

Finished

vsetvli a4, a0, e32, m8
viw.v v@, (al)

sub a6, ab, a4

slli a4, a4, 2

add a1, a1, a4
viw.v v8, (a2)
vfmacc.vf v8, fa@, vo
vsw.v v8, (a2)

add a2, a2, a4

bnez a@, saxpy

ret

HHEHHFHHFHHHFHFH

SiFive

