
RISC-V Architecture Overview
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RISC-V Origin Story (pronounced: risk five)

• Started as a “3-month project” in 2010 at UC Berkeley
– Required a simple ISA which could be extended
– Commercial ISAs were too complex and presented IP 

legal issues

What is RISC-V?
• A high-quality, license-free, royalty-free RISC ISA
• Standard maintained by the non-profit RISC-V Foundation
• Suitable for all types of computing systems

– From Microcontrollers to Supercomputers
• RISC-V is available freely under a permissive license 
• RISC-V is not…

– A Company
– A CPU implementation

Yunsup Lee Krste Asanovic
Andrew 

Waterman

Inventors of RISC-
V
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RISC-V Foundation – riscv.org

• RISC-V Foundation is a non-profit 
organization formed in August 
2015 to publicly govern the ISA 

• Foundation Functions
– Directs future development of ISA
– Compliance tests
– Promotion of the ISA

• >350 members representing a 
wide range of markets
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RISC-V foundation now > 350 members. Free, open, extensible ISA for all computing devices
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• User Mode - version 2.2 Ratified
– Frozen in 2014 at version 2.0
– Updates since 2.0:

• CSR and FENCE.I instructions moved out 
of base extension “I”

• Memory model clarifications

• Privilege Mode - version 1.11  
Ratified
– Version 1.11 ratified May 2019

• Debug Spec - version 0.13 Ratified
• Specifications in Progress

– Hypervisor Extension - version 0.3 Draft
– Vector Extension - version 0.7 Draft
– And many more

• Participate - https://riscv.org
– Join the mailing list
– Become a member

Status of the RISC-V Specifications

https://riscv.org


RISC-V Basics
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RISC-V Instruction Set Architectures

• RISC-V uses a standard naming convention to 
describe the ISAs supported in a given 
implementation

• ISA Name format: RV[###][abc…..xyz]
– RV – Indicates a RISC-V architecture
– [###] - {32, 64, 128} indicate the width of the 

integer register file and the size of the user 
address space

– [abc…xyz] – Used to indicate the set of 
extensions supported by an implementation.
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The Standard Extensions

• Extensions define instructions 
– “I” for Integer is the only required extension in a RISC-V 

implementation and defines 40 instructions
• The RISC-V Specification defines a number of “Standard 

Extensions”
– Standard Extensions are defined by the RISC-V Foundation 

and are optional
• RISC-V allows for custom, “Non-Standard”, extensions 

in an implementation
• Putting it all together (examples)

– RV32I – The most basic RISC-V implementation
– RV32IMAC – Integer + Multiply + Atomic + Compressed
– RV64GC – 64bit IMAFDC 
– RV64GCXext – IMAFDC + a non-standard extension

Extension Description

I Integer

M Integer Multiplication and Division

A Atomics

F Single-Precision Floating Point

D Double-Precision Floating Point

G General Purpose = IMAFD

C 16-bit Compressed Instructions

Non-Standard User-Level Extensions

Xext Non-standard extension “ext”

Common RISC-V Standard Extensions
*Not a complete list
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Register File

• RV32I/64I have 32 Integer Registers
– Optional 32 FP registers with the F 

and D extensions
– RV32E reduces the register file to 16 

integer registers for area constrained 
embedded devices

• Width of Registers is determined by ISA
• RISC-V Application Binary Interface (ABI) 

defines standard functions for registers
– Allows for software interoperability

• Development tools usually use ABI names 
for simplicity

Register ABI Name Description Saver

x0 zero Hard-wired zero -

x1 ra Return address Caller

x2 sp Stack pointer Callee

x3 gp Global pointer -

x4 tp Thread pointer -

x5-7 t0-2 Temporaries Caller

x8 s0/fp Saved register/Frame pointer Callee

x9 s1 Saved register Callee

x10-11 a0-1 Function Arguments/return 
values

Caller

x12-17 a2-7 Function arguments Caller

x18-27 s2-11 Saved registers Callee

x28-31 t3-6 Temporaries Caller
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RISC-V Modes

• RISC-V Privileged Specification defines 3 levels of 
privilege, called Modes

• Machine mode is the highest privileged mode and the 
only required mode
– Flexibility allows for a range of targeted 

implementations from simple MCUs to high-
performance Application Processors

• Machine, Hypervisor, Supervisor modes each have Control 
and Status Registers (CSRs)
– More on these later

RISC-V Modes

Level Name Abbr.

0 User/Application U

1 Supervisor S

2 Hypervisor HS

3 Machine M

Supported Combinations of Modes

Supported Levels Modes

1 M

2 M, U

3 M, S, U

4 M, HS, S, U



RISC-V Instructions
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RISC-V Reference Card
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Compressed Instructions (C Extension)

• Most base integer instructions “Compress” 
to 16-bit equivalents
– 1:1 mapping of compressed instructions to standard 

instructions

• Smaller code size can reduce cost in 
embedded systems
– Directly resulting in smaller Flash/ROM/RAM

• Smaller code size can increase performance 
and reduce power
– Better utilization of Cache RAMs
– Fewer transactions across high power interfaces (DRAM, 

Flash, etc…)

• RV64 can also use the C Extension

I’m mostly
embedded flash

A Microcontroller
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Atomics (A Extension)

• Atomic memory operations (AMO) perform 
Read-Modify-Write operations in a single 
Atomic instruction
– Logical, Arithmetic, Swap
– Acquire (aq) and Release (rl) bits for 

release consistency

• Load-Reserved/Store-Conditional pairs
– Guaranteed forward progress for short 

sequences

li t0, 1 # Initialize swap value. 

again: 

amoswap.w.aq t0, t0, (a0) # Attempt to acquire 

lock. 

bnez t0, again # Retry if held. 

# ... 

# Critical section. 

# ... 

amoswap.w.rl x0, x0, (a0) # Release lock by 

storing 0. 

Example RISC-V Spinlock
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Fence Instructions

• Fences are used to enforce program order 
on device I/O and memory accesses

• FENCE instruction format
– FENCE predecessor, successor
– Predecessor/successor can be

• R,W,I,O
– FENCE RWIO, RWIO – full barrier

Predecessor Load/Store

Fence

Successor Load/Store
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CSR and ECALL Instructions

• Control and Status Registers (CSRs) have their own dedicated 
instructions :
– Read/Write
– Read and Set bit
– Read and Clear bit

• Environment Call instruction used to transfer control to the 
execution environment and a higher privileged mode
– Triggers a synchronous Interrupt (discussed later)
– Example: User mode program can use an ECALL to transfer control to 

a Machine mode OS kernel, aka System Call



RISC-V Control and Status Registers (CSR)
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What are Control and Status Registers (CSRs)

• CSRs are Registers which contain the working 
state of a RISC-V machine

• CSRs are specific to a Mode
– Machine Mode has ~17 CSRs (not including performance 

monitor CSRs)
– Supervisor Mode has a similar number, though most are 

subsets of their equivalent Machine Mode CSRs
• Machine Mode can also access Supervisor CSRs

• CSRs are defined in the RISC-V privileged 
specification
– We will cover a few key CSRs here 
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Identification CSRs

• misa – Machine ISA Register
– Reports the ISA supported by the hart (i.e. 

RV32IMAC)

• mhartid – Machine hart ID
– Integer ID of the Hardware Thread

• mvendorid – Machine Vendor ID
– JEDEC Vendor ID

• marchid – Machine Architecture ID
– Used along with mvendorid to identify a 

implementation. No format specified

• mimpid - Machine Implementation ID
– Implementation defined format
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Machine Status (mstatus) - The Most Important CSR

Control and track the hart’s current operating state

Bits Field Name Description

0 UIE User Interrupt Enable

1 SIE Supervisor Interrupt Enable

2 Reserved

3 MIE Machine Interrupt Enable

4 UPIE User Previous Interrupt Enable

5 SPIE Supervisor Previous Interrupt Enable

6 Reserved

7 MPIE Machine Previous Interrupt Enabler

8 SPP Supervisor Previous Privilege

[10:9] Reserved

[12:11] MPP Machine Previous Privilege

Bits Field Name Description

[14:13] FS Floating Point State

[16:15] XS User Mode Extension State

17 MPRIV Modify Privilege (access memory as MPP)

18 SUM Permit Supervisor User Memory Access

19 MXR Make Executable Readable

20 TVM Trap Virtual memory

21 TW Timeout Wait (traps S-Mode wfi)

22 TSR Trap SRET

[23:30] Reserved

[31] SD State Dirty (FS and XS summary bit)

RV32 mstatus CSR
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Timer CSRs

• mtime
– RISC-V defines a requirement 

for a counter exposed as a 
memory mapped register

– There is no frequency 
requirement on the timer, but
• It must run at a constant 

frequency
• The platform must expose 

frequency

Bits Field Name Description

[63:0] mtime Machine Time Register

Bits Field Name Description

[63:0] mtimecmp Machine Time Compare Register

mtime CSR mtimecmp CSR

• mtimecmp
– RISC-V defines a memory 

mapped timer compare 
register

– Triggers an interrupt when 
mtime is greater than or 
equal to mtimecmp
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Supervisor CSRs

• Most of the Machine mode CSRs have 
Supervisor mode equivalents
– Supervisor mode CSRs can be used to control the 

state of Supervisor and User Modes.
– Most equivalent Supervisor CSRs have the same 

mapping as Machine mode without Machine 
mode control bits

– sstatus, stvec, sip, sie, sepc, scause, satp, and 
more

• satp - Supervisor Address Translation and 
Protection Register
– Used to control Supervisor mode address 

translation and protection

Bits Field Name Description

[21:0] PPN Physical Page Number of the root page table

[30:22] ASID Address Space Identifier

31 MODE MODE=1 uses Sv32 Address Translation

RV32 satp CSR

Bits Field Name Description

[43:0] PPN Physical Page Number of the root page table

[59:44] ASID Address Space Identifier

[63:60] MODE Encodings for Sv32, Sv39, Sv48

RV64 satp CSR
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Virtual Memory

• RISC-V has support for Virtual Memory 
allowing for sophisticated memory 
management and OS support (Linux)

• Requires an S-Mode implementation
• Sv32 

– 32bit Virtual Address
– 4KiB, 4MiB page tables (2 Levels)

• Sv39 (requires an RV64 implementation) 
– 39bit Virtual Address
– 4KiB, 2MiB, 1GiB page tables (3 Levels)

• Sv48 (requires an RV64 implementation)
– 48bit Virtual Address
– 4KiB, 2MiB, 1 GiB, 512GB page tables (4 

Levels)
• Page Tables also contain access permission 

attributes

0xFFFF_FFFF

0x0000_0000

Virtual 
Address

Virtual Address Map

0xFFFF_FFFF

0x0000_0000

Physical 
Address

Physical Address Map
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Physical Memory Protection (PMP)

• Can be used to enforce access 
restrictions on less privileged modes
– Prevent Supervisor and User 

Mode software from accessing 
unwanted memory

• Up to 16 regions with a minimum 
region size of 4 bytes

• Ability to Lock a region
– A locked region enforces 

permissions on all accesses, 
including M-Mode

– Only way to unlock a region is a 
Reset

Locked Region

User Mode 
Context

User Mode Data

0xFFFF_FFFF

0x0000_0000

4 Byte Region Locked.
Only accessible after a 
reset

User Mode has full 
RWX Privileges 

User Mode has Read 
only Privileges

Shared Library 
Code

User Mode has 
Execute only 
Privileges

Example PMP Memory Map

Can define
entire address 
map as not 
accessible
to U-Mode in 1 
register



RISC-V Interrupts
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• RISC-V defines the following interrupts per Hart 
– Software – architecturally defined software interrupt
– Timer – architecturally defined timer interrupt
– External – Peripheral Interrupts
– Local - Hart specific Peripheral Interrupts

• Optionally per privilege level
– Can have Supervisor Software/Timer/Machine 

Interrupts
– Can have User Software/Timer/Machine

• Local interrupts are optional and implementation 
specific
– Can be used for hart-specific peripheral interrupts
– Useful for latency-sensitive embedded systems or 

small embedded systems with a small number of 
interrupts

RISC-V Interrupts
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Machine Status (mstatus) – As it relates to Interrupts

Bits Field Name Description

0 UIE User Interrupt Enable

1 SIE Supervisor Interrupt Enable

2 Reserved

3 MIE Machine Interrupt Enable

4 UPIE User Previous Interrupt Enable

5 SPIE Supervisor Previous Interrupt Enable

6 Reserved

7 MPIE Machine Previous Interrupt Enabler

8 SPP Supervisor Previous Privilege

[10:9] Reserved

[12:11] MPP Machine Previous Privilege

Bits Field Name Description

[14:13] FS Floating Point State

[16:15] XS User Mode Extension State

17 MPRIV Modify Privilege (access memory as MPP)

18 SUM Permit Supervisor User Memory Access

19 MXR Make Executable Readable

20 TVM Trap Virtual memory

21 TW Timeout Wait (traps S-Mode wfi)

22 TSR Trap SRET

[23:30] Reserved

[31] SD State Dirty (FS and XS summary bit)

RV32 mstatus CSR

• M/S/U IE – Global Interrupt Enables for Modes which supports interrupts

• M/S/U PIE – Encodes the state of interrupt enables prior to an interrupt.

– These bits can also be written to in order to enable interrupts when returning to lower privilege modes

• M/S PP – Encodes the privilege level prior to the previous interrupt

– These bits can also be written to in order to enter a lower privilege mode when executing MRET or SRET instructions
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Machine Interrupt Cause CSR (mcause)

• Interrupts are identified by reading the 
mcause CSR

• The interrupt field determines if a trap 
was caused by an interrupt or an 
exception

Interrupt = 1 (interrupt)

Exception 
Code

Description

0 User Software Interrupt

1 Supervisor Software Interrupt

2 Reserved

3 Machine Software Interrupt

4 User Timer Interrupt

5 Supervisor Timer Interrupt

6 Reserved

7 Machine Timer Interrupt

8 User External Interrupt

9 Supervisor External Interrupt

10 Reserved

11 Machine External Interrupt

12 - 15 Reserved

≥16 Local Interrupt  X

Interrupt = 0 (exception)

Exception 
Code

Description

0 Instruction Address Misaligned

1 Instruction Access Fault

2 Illegal Instruction

3 Breakpoint

4 Load Address Misaligned

5 Load Access Fault

6 Store/AMO Address Misaligned

7 Store/AMO Access Fault

8 Environment Call from U-mode

9 Environment Call from S-mode

10 Reserved

11 Environment Call from M-
mode

12 Instruction Page Fault

13 Load Page Fault

14 Reserved

15 Store/AMO Page Fault

≥16 Reserved

Bits Field Name Description

XLEN-1 Interrupt Identifies if an interrupt was 
synchronous or asynchronous

[XLEN-2:0] Exception Code Identifies the exception 

mcause CSR
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• mie used to enable/disable a given 
interrupt

• mip indicates which interrupts are 
currently pending
– Can be used for polling

• Lesser-privilege bits in mip are writeable
– i.e. Machine-mode software can be used to 

generate a supervisor interrupt by setting the 
STIP bit

• mip has the same mapping as mie

Machine Interrupt-Enable and Pending CSRs (mie, mip)

Bits Field Name Description

0 USIE User Software Interrupt Enable

1 SSIE Supervisor Software Interrupt Enable

2 Reserved

3 MSIE Machine Software Interrupt Enable

4 UTIE User Timer Interrupt Enable

5 STIE Supervisor Timer Interrupt Enable

6 Reserved

7 MTIE Machine Timer Interrupt Enable

8 UEIE User External Interrupt Enable

9 SEIE Supervisor External Interrupt Enable

10 Reserved

11 MEIE Machine External Interrupt Enable

12-15 Reserved

≥16 LIE Local Interrupt Enable

mie CSR
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mtvec sets the Base interrupt vector and the interrupt Mode 

• mtvec.Mode = Direct
– All Interrupts trap to the address mtvec.Base
– Software must read the mcause CSR and react accordingly

• mtvec.Vectored
– Interrupts trap to the address mtvec.Base + (4*mcause.ExCode)
– Eliminates the need to read mcause for asynchronous exceptions

Machine Trap Vector CSR (mtvec)

Bits Field Name Description

[XLEN-1:6] Base Machine Trap Vector Base Address.
64-byte Alignment

[1:0] Mode MODE Sets the interrupt processing 
mode. 

mtvec CSR

mtvec Modes

Value Name Description

0x0 Direct All Exceptions set PC to mtvec.BASE
Requires 4-Byte alignment

0x1 Vectored Asynchronous interrupts set pc to 
mtvec.BASE + (4×mcause.EXCCODE)
Requires 4-Byte alignment

> 0x01 Reserved
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• On entry, the RISC-V hart will

– Save the current state

– Then set PC = mtvec, mstatus.MIE = 0

• MRET instruction restores state

Trap Handler – Entry and Exit

• Typical trap handler software will

PC

Priv

MIE

MEPC

mstatus.MPP

mstatus.MPIE

Push Registers

…

interrupt = mcause.msb

if interrupt

branch isr_handler[mcause.code]

else

branch exception_handler[mcause.code]

…

Pop Registers

MRET

Interrupt handler pseudo code

mtevc.MODE = Direct

PC

Priv

MIE

MEPC

mstatus.MPP

mstatus.MPIE
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.align 2

.global trap_entry

trap_entry:

addi sp, sp, -16*REGBYTES

//store ABI Caller Registers

STORE x1,  0*REGBYTES(sp)

STORE x5,  2*REGBYTES(sp)

…

STORE x30, 14*REGBYTES(sp)

STORE x31, 15*REGBYTES(sp)

//call C Code Handler

call handle_trap

//restore ABI Caller Registers

LOAD x1,  0*REGBYTES(sp)

LOAD x5,  2*REGBYTES(sp)

…

LOAD x30, 14*REGBYTES(sp)

LOAD x31, 15*REGBYTES(sp)

addi sp, sp, 16*REGBYTES

mret

Interrupt Handler Code

void handle_trap()

{

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

//mask interrupt bit and branch to handler

isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

//branch to handler

exception_handler[mcause]();

}

}

//write trap_entry address to mtvec 

write_csr(mtvec, ((unsigned long)&trap_entry));

RISC-V Assembly interrupt handler 
to Push and Pop register file

C Code Handler determines interrupt cause and branches to the appropriate 
function 
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• Pushing and Popping Registers in Assembly 
is a pain

• The interrupt attribute was added to GCC 
to facilitate interrupt handlers written 
entirely in C

– Interrupt functions only saves/restores 
necessary registers onto the stack

– Align function on an 8-byte boundary

– Calles MRET after popping register file back 
off the stack

Compiler Interrupt Attribute

void handle_trap(void) __attribute((interrupt));

void handle_trap()

{

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

//mask interrupt bit and branch to handler

isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

//synchronous exception, branch to handler

exception_handler[mcause & MCAUSE_CAUSE]();

}

}

//write handle_trap address to mtvec 

write_csr(mtvec, ((unsigned long)&handle_trap));

Interrupt handler with interrupt attribute. 
No assembly Code necessary
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Core Local Interruptor (CLINT)

• Core Local Interruptor is a memory mapped peripheral used to 
generate Software and Timer Interrupts

• Machine Software Interrupt Pending Register

– When written to, will pend a hart specific software interrupt

• Machine Timer and Timer Compare Registers

– mtime CSR is a 64 bit clock which continually increments

– mtimecmp will generate a hart specific interrupt when mtime = 
mtimecmp

• Multi-Core scalable and consistent register map across SiFive RISC-V 
Core IP

– Provides registers to generate software and timer interrupts for all harts 
in a system
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• RISC-V defines Global Interrupts as a 
Interrupt which can be routed to any 
hart in a system

• Global Interrupts are prioritized and 
distributed by the Platform Level 
Interrupt Controller (PLIC)

• The PLIC is connected to the External 
Interrupt signal for 1 or more harts in 
an implementation

RISC-V Global Interrupts
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Platform Level Interrupt Controller (PLIC)

• The PLIC handles the majority of the Core Complex’s Interrupts
– The PLIC has a programmable number prioritization levels
– Only the highest priority pending interrupt is presented on the claim/complete register

• Multi-Core interrupt distribution
– The PLIC is globally addressable and is connected to the Machine External Interrupt signal of 

all cores in the Core Complex

• Priority Registers
– 4B registers containing 3-bit interrupt priority 
– 1 is lowest priority, 7 is the highest, 0 disables

• Pending and Enable Registers
– Bit packed Pending and Enable registers

• Threshold Register
– Only interrupts with Priority > Threshold will trigger an interrupt

• Claim/Complete
– Returns the ID of the highest pending interrupt
– Interrupt completion is signaled to the PLIC by software writing the ID back to this register
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• In this example an interrupt is presented to the PLIC

• The PLIC signals an interrupt to a hart using the Machine External Interrupt (interrupt 11)

• The interrupt handler (handle_trap) branches to the defined function to handle the Machine External Interrupt
– C Code placed the address of machine_external_interrupt function in location 11 of the async_handler vector table

• The machine_external_interrupt handler does the following:
– Reads the PLIC’s claim/complete register to determine highest priority pending interrupt

– Uses another vector table to branch to the interrupt’s specific handler

– Completes the interrupt by writing the interrupt number back to the PLIC’s claim/complete

PLIC Interrupt Code Example

void handle_trap(void) __attribute((interrupt));

void handle_trap()

{

unsigned long mcause = read_csr(mcause);

if (mcause & MCAUSE_INT) {

//mask interrupt bit and branch to handler          

isr_handler[mcause & MCAUSE_CAUSE] ();

} else {

//synchronous exception, branch to    handler

exception_handler[mcause & MCAUSE_CAUSE]();

}

}

//install PLIC handler at MEIP Location

isr_handler[11] = machine_external_interrupt;

//write trap_entry address to mtvec 

write_csr(mtvec, ((unsigned long)&handle_trap));

void machine_external_interrupt()

{

//get the highest priority pending PLIC interrupt

uint32_t int_num = plic.claim_comlete;

//branch to handler

plic_handler[int_num]();

//complete interrupt by writing interrupt number 

back to PLIC

plic.claim_complete = int_num;

}
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RISC-V Interrupt System Architecture (M-mode only example)



RISC-V Vector Extension
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Vector Extension Origin - Hwacha

• RISC-V (2010) originally designed to 
explore new accelerators based on top 
of vector engine (ESP)

• Hwacha was primary research vehicle to 
develop vector ISA and 
microarchitecture ideas (2012)
– Hwacha taped out multiple times at 

UCB (v4.5 on EagleX)
– Hwacha was an explicitly decoupled 

vector-fetch accelerator with own 
vector instruction stream

RISC-V “V” extension has more traditional 
single instruction stream, a la original Cray 

vectors

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-264.pdf

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-264.pdf
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RISC-V Vector Extension History

• First proposal (v0.1) presented June 2015 
workshop

• Many iterations until recent v0.7 stable draft 
in Jan 2019
– v0.7 now being targeted by community 

with implementation work and software 
development

– Stable spec version v0.7.1, matching 
software release!

• By far the largest RISC-V extension (larger 
than sum of everything previously ratified)

https://github.com/riscv/riscv-v-spec

https://github.com/riscv/riscv-v-spec
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RISC-V Foundation Vector Extension Overview

v0[0]

v1[0]

v31[0]

v0[1]

v1[1]

v31[1]

V0[VLMAX-1]

v1[VLMAX-1]

v31[VLMAX-1]

32 vector 
registers

vtype

vl

Vector length CSR sets number of 
elements active in each instruction

Vtype sets width of element in each 
vector register (e.g., 16-bit, 32-bit, …)

Maximum vector length (VLMAX) depends on implementation, 
number of vector registers used, and type of each element.

• Unit-stride, strided, scatter-gather, structure load/store 
instructions

• Rich set of integer, fixed-point, and floating-point instructions
• Vector-vector, vector-scalar, and vector-immediate instructions
• Multiple vector registers can be combined to form longer vectors 

to reduce instruction bandwidth or support mixed-precision 
operations (e.g., 16b*16b->32b multiply-accumulate)

• Designed for extension with custom datatypes and widths

vstart

Resumption element after trap

Vector 
CSRs

fcsr (vxrm/vxsat)

Fixed-point rounding mode and 
saturation flag fields in FP CSR
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Vector Unit Implementation-Dependent Parameters

• ELEN: Size of largest element in bits
• VLEN: Number of bits in each vector register

– VLEN >= ELEN
• Datapath Width

Vector ISA designed to allow same binary code to work across variations in VLEN and datapath width

Name Issue 

Policy

Issue 

Width

VLEN 

(bits)

Datapath (bits) VLEN/Datapath (beats)

Smallest InO 1 32 32 1

Simple InO 1 512 128 4

InO-Spatial InO 2 128 128 1

OoO-Spatial OoO 2-3 128 128 1

OoO-Temporal OoO 2-3 512 128 4

OoO-Server OoO 3-6 2048 512 4

OoO-HPC OoO 3-6 16384 2048 8
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Example - 32-bit Vector Add

# vector-vector add routine of 32-bit integers
# void vvaddint32(size_t n, const int*x, const int*y, int*z)
# { for (size_t i=0; i<n; i++) { z[i]=x[i]+y[i]; } }
#
# a0 = n, a1 = x, a2 = y, a3 = z
# Non-vector instructions are indented

vvaddint32:
vsetvli t0, a0, e32 # Set vector length based on 32-bit vectors
vlw.v v0, (a1)           # Get first vector
sub a0, a0, t0         # Decrement number done
slli t0, t0, 2         # Multiply number done by 4 bytes
add a1, a1, t0         # Bump pointer

vlw.v v1, (a2)           # Get second vector
add a2, a2, t0         # Bump pointer

vadd.vv v2, v0, v1        # Sum vectors
vsw.v v2, (a3)           # Store result
add a3, a3, t0         # Bump pointer
bnez a0, vvaddint32    # Loop back
ret                    # Finished
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Example - SAXPY

# void
# saxpy(size_t n, const float a, const float *x, float *y)
# { size_t i; for (i=0; i<n; i++) { y[i] = a * x[i] + y[i];}}
#
# register arguments:
#     a0      n
#     fa0     a
#     a1      x
#     a2      y

saxpy:
vsetvli a4, a0, e32, m8 # Set vector length based on 32-bit vectors, Vlmul x8
vlw.v v0, (a1)          # Get first vector x[i]

sub a0, a0, a4       # Decrement count
slli a4, a4, 2       # Multiply length by 4 vector elements 
add a1, a1, a4       # Increment pointer

vlw.v v8, (a2)          # Get second vector y[i]
vfmacc.vf v8, fa0, v0   # Fused Multiply Accumulate v8 = (fa0 * v0) + v8
vsw.v v8, (a2)          # Store result

add a2, a2, a4       # Increment pointer
bnez a0, saxpy       # Loop Back
ret                  # Finished


