
Professional development tools

for RISC-V

Ryan Sheng, IAR Systems (China)

Future-proof software tools and services

for embedded development

36 years in the industry

Listed on NASDAQ Stockholm

2018
 Sales SEK 385M

 Operating profit SEK 116M

 Net cash SEK 114M

 Dedicated team of support,

sales and service worldwide

 46,000 customers

 32% of revenue invested in

R&D

+ Distributor

representation in

40+ countries

Uppsala

Munich

Paris

Tokyo

Seoul

Shanghai

Dallas

Boston

Los Angeles

San Francisco

The world’s most widely used development

tools for embedded applications

12,000+
SUPPORTED

DEVICES,

150,000
USERS

WORLDWIDE,

36
YEARS OF
EXPERIENCE

Be free! Build what you want in

the platform of your choice.

IAR Embedded Workbench
Complete C/C++ compiler and debugger toolchain

Widest device support

Industry-leading code optimization technology

Comprehensive debugger

Integrated static and runtime

code analysis

Functional safety

certified versions

ISO/ANSI C/C++

compliance with

C11 and C++14

Global support

and training

Support for 12,000+ devices

40+ architectures
All available 8-,16- and 32-bit MCUs

 Cortex-M0

Cortex-M0+

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-M7

Cortex-M23

Cortex-M33

Cortex-R4

Cortex-R5

Cortex-R52

Cortex-R7

Cortex-R8

Cortex-A5

Cortex-A7

Cortex-A8

Cortex-A9

Cortex-A15

ARM11

ARM9

ARM7

SecurCore

8051

MSP430

AVR

AVR32

RX

RL78

RH850

78K

SuperH

V850

R32C

M32C

M16C

R8C

H8

STM8

ColdFire

HCS12

S08

MAXQ

CR16C

SAM8

RISC-V

Partnership with SiFive

IAR Embedded Workbench for

RISC-V

Milestones

Q1 2018
Joins the

RISC-V

foundation

Q3 2017
Small pre-dev

on compiler

for RISC-V

2016
Starts

exploring

RISC-V

Q2 2018
Official start

of the

development

project

Q1 2019

First beta

(limited for

partners and

demos)

Q2/Q3

2019
First

release

TBD
Functional

safety

release

Compiler

• Proprietary design based on over 36 years of experience

• Based on a platform that are common between different targets to
handle global optimizations, language compliance, etc.

– Easy source code migration between different MCU targets

• Target unique backend for specific adaptations and optimizations

• RISC-V specifics

– Primary target will be supporting standard extensions

– Initial prioritization of compiler optimization is code size

– Main focus for IAR has always been to supply the best
code size and speed on the market

IAR C/C++ Compiler

The linker can

remove

unused code

Major functions of the

optimizer can be

controlled individually

Balance between size

and speed by setting

different optimizations

for different parts of the

code

Multi-file compilation allows the

optimizer to operate on a larger

set of code

Option to

maximize

speed with no

size

constraints

Well-tested
Commercial test suites

• Plum-Hall Validation test suite

• Perennial EC++VS

• Dinkum C++ Proofer

In-house developed test suite

>500,000 lines of C/C++ test

code run multiple times

• Processor modes

• Memory models

• Optimization levels

Language standards
• ISO/IEC 14882:2015

(C++14, C++17)

• ISO/IEC 9899:2012 (C11)

• ANSI X3.159-1989 (C89)

• IEEE 754 standard for

floating-point arithmetic

Multiple levels

of

optimizations

for code size

and execution

speed

Object Code

Optimizations
C Source

Parser

Intermediate Code High-Level Optimizer

Code Generator

Target Code
Low-Level

Optimizer

Assembler

Compiler

LW A0,-0x0(GP)

C.ADDI A0,-0xF

SW A0,-0x4(GP)

=

–

15 y

x

x = y - 15;
Function

inlining

Dead code

elimination

Loop

unrolling

Peephole

Crosscall

Scheduling

01001000111001101001

 Linker

Link time

optimizations

Current code size benchmark

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Comparing the linked code size between GCC 8.1.0 and IAR EWRISCV first beta 1.0.0

riscv64-unknown-elf-gcc-8.1.0-2018.12.0-x86_64-w64-mingw32 EWRISCV v1.0.0

icc options: --core=RV32IMAC -e -Ohz --dlib_config=full

gcc options: -Os -D NDEBUG -march=rv32imac -mabi=ilp32

 -mcmodel=medlow --specs=nano.specs

To-do list in code optimizations

before the formal release 1.10

• Cross call and cross jump

• Hoisting

• Common sub-expressions elimination

• Additional link time optimizations

• Optimized use of compact instructions

• Numerous peephole optimizations

Debugging

• IAR Embedded Workbench for RISC-V will have a fully
integrated debugging solution

• This will reuse the C-SPY debugger interface that have
been used in many of our other products
– Rich debug macro language, etc.

• Probes
– IAR I-jet will support RISC-V

– Support for major 3rd-party probes
will be added later

IAR C-SPY debugger overview

IAR Embedded

Workbench
C-SPY

Simulator

driver
Simulator

I-jet

driver
I-jet

Target

HW

IAR C-SPY Debugger

3rd-party

driver

JTAG

Emulator

Target

HW

SDK

interface

Target system with application SW

IAR systems

3rd-party

RTOS

Awareness etc.

I-jet in-circuit debug probe

• Supports RISC-V, ARM7/ARM9/ARM11 and Cortex-M/R/A cores

• USB interface

• Target power of up to 400mA can be supplied from I-jet with overload protection

• Target power consumption can be measured with ~200µA resolution at 200kHz

• JTAG and Serial Wire Debug (SWD) clocks up to 32MHz

(no limit on the MCU clock speed)

• Support for SWO speeds of up to 60MHz

• Unlimited flash breakpoints

(to be added for RISC-V)

Integrated profiling tools

Function profiling
• Based on simulator, sampled trace

or full trace

• Execution time per function

• Select time interval

Timeline window shows the

application’s profile
Interrupt log, Data log, Event log, Call stack

Code coverage analysis
Which code has been executed?

Stack analysis
Calculates maximum
stack usage, helps find
the optimal stack size, and
checks stack integrity at
runtime to detect overflow

Standards:
IEC 61508

ISO 26262

EN 50128

IEC 62304

Solution for safety

critical applications

Certified toolchain

 A special functional safety edition of

IAR Embedded Workbench

Simplified validation

 Functional safety certificate from TÜV SÜD

 Safety report from TÜV SÜD

 Safety guide

Guaranteed support through the product life cycle

 Prioritized support

 Validated service packs

 Regular reports of known problems

High level timeplan

First release

• RV32IMFC

• Initial compiler optimizations, focus on code size

• IAR simulator

• I-jet debugger

• C11 (no RISC-V ABI compliant), C++17

• C-STAT (static code analysis)

• Official support for a set of CPU cores

1.10

Q2/Q3

2019

High level timeplan

Future releases

• Improved optimizations for code size and speed

• Atomics

• RV32E

• RV64I

• C RISC-V ABI compliance

• C-RUN (runtime code analysis)

• Trace

• Functional safety certification

• 3rd-party debug probes

2019

2020

Demonstration

Artix-7

Arty

FPGA

Kit

SiFive

E31

Core

+

IAR Embedded

Workbench for

RISC-V + I-jet

Thanks for your attention!

www.iar.com/riscv

